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Abstract
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1 Introduction

College applicants face a risky choice with high stakes: they can apply to only a few colleges and
are uncertain about which will admit them. To hedge their bets, many applicants apply to a broad
range of colleges, including some they consider reaches, matches, and safeties. This strategy is gener-
ally recommended by guidance counselors and advisers. For example, in the context of US college
admissions, the College Board suggests, “Before you start your applications, strengthen your list to
include three reach colleges, two match colleges, and one safety college to ensure you apply to a bal-
anced list of schools that match your academic abilities.”1 Diversifying one’s application portfolio
in this way hedges against not only the idiosyncratic risks of each college application but also the
potential correlation across college decisions.

Why might admissions be correlated? In some contexts, correlation is an element of the design.
For example, in many countries, applicants submit applications before taking a centralized exam that
determines admissions decisions across schools. This process has been or is currently used for high
school and college admissions in China, Ghana, Kenya, Mexico, Turkey, and the United Kingdom,
to name just a few examples. Correlation also arises in centralized matching systems that use single
tie-breaking, i.e., a common lottery that is used across schools to break priority ties for overdemanded
seats. Public school seats in Amsterdam and New York City are allocated by this procedure.

In contexts such as the decentralized process of US undergraduate and graduate admissions, one
would posit a different source of correlation. Here, an applicant is likely uncertain about her relative
caliber: that is, where she stands in the pool of applicants. She may also worry that aspects of her
application—e.g., the strength of her letters of recommendation, the quality of her application essay,
the rarity of her extracurricular activities—will affect her admissions prospects across schools.

This paper studies how an applicant accounts for this correlation in the application process.
Which schools should she apply to? Should she be aggressive by applying exclusively to high-ranked
colleges, gambling that at least one accepts? Or should she hedge by also applying to safety schools?

To answer these questions, we build on the canonical framework of simultaneous search developed
by Chade and Smith (2006). They model a decisionmaker who chooses a portfolio of gambles. Each
gamble has a single prize (“acceptance”) and once these gambles mature, the decisionmaker chooses
her favorite prize. Although this analysis has been extended in a number of different directions,2 the
literature generally treats all gambles as stochastically independent. Hence, rejection by one school
does not influence one’s belief about the likelihood of admission elsewhere.

While we view independence to be the natural starting point, this assumption precludes scenarios
like those described above. Our approach instead invokes the notion of a “common score” that
determines admissions decisions across colleges. Each college has a known threshold and accepts an
applicant only if her score clears its threshold. The applicant chooses her portfolio prior to learning
her score. Therefore, she anticipates that if her application is rejected by, say, College i, then it will
also be rejected by any college that has a weakly higher threshold.

1See https://secure-media.collegeboard.org/CollegePlanning/media/pdf/BigFuture-Strengthen-Your-College-List.pdf.
2See, for example, Galenianos and Kircher (2009), Chade, Lewis, and Smith (2014), and Olszewski and Vohra (2016).
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In the context of our motivating examples, this common score may be the test result from the
centralized examination that applicants are required to take after choosing their portfolio. Or it may
be the lottery number that is used to break priority ties after one has submitted one’s rank-order list
in a single tie-breaking matching procedure. It may also simply reflect the applicant’s standing in the
pool of applicants or the strength of her letters of recommendation, analogous to the uncertainty that
an applicant faces in decentralized undergraduate and graduate admissions.

The common-score formulation is tractable and has a graphical characterization. The optimal
portfolio problem can be represented as a “coverage” problem in which each portfolio is depicted as
a collection of rectangles in the unit square in which one dimension represents probability and the
other utility. We use this graphical approach to deduce properties of the optimal solution.

In order to describe these properties, let us first classify colleges. The college that an applicant
would pick if she could apply to only one is referred to as her “match”: this school maximizes her
expected payoff given its acceptance rate and her payoff from attending it. A “safety school” is less
selective than the match: it has a higher acceptance rate but its reward is sufficiently low that given a
single shot, the applicant would prefer to aim higher.3 A “reach” is more selective than the match: its
reward may be high but the applicant would not target it exclusively given its low acceptance rate.

Our main finding is that if the applicant applies to several colleges, she hedges by applying to both
safety schools and reaches. The rationale for aiming high is that in a portfolio of multiple colleges, the
applicant has backup options that make her more willing to gamble in her top choice. But she also
aims low in choosing those backup options. The reason is that backup options matter only if she is
rejected by her top choice and, by the Sure-Thing Principle, she should condition on this information.
Since being rejected by her top choice constitutes bad news about her common score, the applicant is
motivated to choose backup options less selective than her match.

We obtain these conclusions by characterizing how the optimal portfolio shifts with an applicant’s
beliefs and risk sensitivity. Theorem 1 shows that the optimal solution exhibits a bad-news effect
wherein the decisionmaker applies to colleges less aggressively when she is less optimistic about her
score (in a likelihood-ratio sense). Theorem 2 finds that the applicant applies more aggressively if
she becomes more risk loving in an Arrow-Pratt sense. Combining the two effects, Theorems 3 and 4
show that if an applicant can apply to more colleges—say, if application costs fall—she chooses a
more dispersed portfolio that expands both upwards and downwards in terms of college selectivity.4

These predictions diverge from those of the leading framework. Chade and Smith (2006) show
that given independent admissions probabilities, the optimal portfolio is aggressive and precludes
applications to safety schools: in particular, their Theorem 2 asserts that the optimal portfolio of k
colleges is more aggressive than the k best single-college portfolios. When each college has many
replicas, optimal portfolios exclude any college that is less selective than the single college in the
optimal single-college portfolio.

Because applications to safety schools cannot be rationalized with independent admissions, Chade,

3Arguably, this notion of a “match” is conservative as an applicant might choose a college with a high acceptance rate if
she can apply to only one. The point is that a safety school is even less selective than that.

4Pallais (2015) shows that portfolios become more dispersed in decentralized college admissions when application costs
fall. Ajayi (2022) shows the same occurs in centralized admissions if the applicant is allowed to apply to more colleges.
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Eeckhout, and Smith (2017) in their survey suggest

By the same token, “safety schools” can only be understood if acceptances are not independent....This
remains a challenging but important research avenue.

Against this backdrop, one contribution of this paper is that it posits a tractable model of correlation
in which an applicant hedges by including safety schools in her optimal portfolio.

Beyond identifying properties of the optimal portfolio, we find an algorithm that delivers the op-
timal portfolio in polynomial time. Our approach treats simultaneous search as a recursive problem:
an applicant decomposes the problem of identifying an optimal portfolio of k colleges into a two-
stage process during which she first chooses the top-ranked program to include in her portfolio (“her
first choice”) and then chooses the optimal continuation of pk´ 1q colleges if she is rejected by that first
choice. In principle, this recursive problem could suffer from the curse of dimensionality where the
continuation has to condition on all colleges that have rejected one’s application. A property of the
common-score formulation is that a sufficient statistic for the “history” of colleges that have rejected
one’s application thus far is the least selective college that has done so. Using this property, in the
main text we describe an algorithm that achieves the optimal portfolio of k colleges in about n3 steps;
in the online appendix, we use the bad-news effect to speed up the algorithm to about n2 log n steps.5

We also show that this approach achieves the optimal solution in settings outside our baseline model,
in particular if portfolios have to satisfy “tier constraints” that limit the number of schools in each
tier. This generality is potentially useful as a number of countries feature such constraints.

We study three extensions of the baseline framework. The first extension allows the applicant
to be uncertain about the threshold used by each college. We find that so long as the relative rank-
ing of selectivity across colleges remains unchanged, the applicant chooses the same portfolio as if
each college’s threshold were known and set to its “certainty equivalent.” The second extension
departs more significantly by bridging the independent-success and common-score models. In this
extension, a student obtains for each college a college-specific score that is the weighted average of
independent and common components. Putting all the weight on the common component results
in our baseline framework, whereas doing the same on the independent component leads to the
canonical simultaneous-search model. Although the mixed model is considerably more challenging
to analyze, we show that a motive for diversification manifests in two ways. First, when there is any
weight on the common component, an applicant will apply to many colleges in both the most and
least selective tiers if she is choosing a large portfolio. By contrast, when there is no weight on the
common component, the applicant will apply almost exclusively to colleges in the most selective tier.
Second, in studying two-college portfolios, we show that increasing correlation never makes the op-
timal portfolio less diverse in the sense of having a less aggressive first choice and a more aggressive

5Chade and Smith (2006) show that given independent admissions, the optimal portfolio is reached through a marginal
improvement algorithm that selects colleges on the basis of their marginal benefit; this algorithm takes about n2 steps. It
finds the optimal portfolio of k colleges by choosing, at the first stage, the college with the highest expected value; at stage
j ď k, it chooses the college that adds the highest marginal benefit to the optimal portfolio of pj´ 1q colleges constructed so
far. This algorithm is myopic in that a college is added to the optimal portfolio without accounting for the other colleges
that may be added later. A property that this algorithm requires is that the optimal portfolio of k colleges nests that of
pk´ 1q colleges, which holds in their setting. This property fails here.
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second choice. The third extension models sequential search in the common-score setting and shows
that it results in informationally directed search.

Let us put these results in context. Although the common-score approach may appear stark,
admissions processes that use a common score appear worldwide. Here are a few examples:

• The UK employs a centralized university admissions process in which each student applies to
at most five universities prior to taking the A-level examinations. Universities respond to most
of these applications with a rejection or a provisional acceptance that specifies a threshold that
the applicant’s A-level score must clear in order for her to be admitted.6 The applicant responds
to these offers prior to learning her A-level score by selecting a first choice and a backup in case
her score does not clear the threshold of that first choice, i.e., a two-college portfolio.

• In Kenya, more than a million students each year take the Kenya Certificate of Primary Education
(KCPE), which serves as the entrance examination for secondary schools.7 Students submit
their choices when registering for the KCPE: that is, prior to taking the exam or learning their
scores. Students are permitted to list up to six schools. Schools admit students in priority
of their examination score until they run out of spots. Although schools do not have prede-
termined score thresholds, the relative selectivity of schools remains highly stable over time
(Lucas and Mbiti, 2012), and our analysis in Section 5.1 allows for that uncertainty.

• A similar system is used in Ghana where students choose a portfolio of six senior high schools
and then take a standardized common examination. Ajayi and Sidibe (2022) highlight that this
system matches several hundred thousands of students with more than two thousand schools
every year, “making it de facto one of the largest matching systems in the world.”

Analyses of portfolio choices for these settings have been limited, partly because of the consider-
ations that correlation raises. In her study of the admissions process in Ghana, Ajayi (2022) estimates
preferences through the revealed-preference argument that an applicant must prefer a school in her
portfolio to all others that are equally selective. Ajayi and Sidibe (2022) model the common-score ap-
proach directly and, building on our work, implement the algorithm that we propose in this paper.

A common score also arises in centralized matching procedures that involve single tie-breaking,
which is used to allocate seats in public schools in Amsterdam and New York City. These matching
procedures involve deferred acceptance and constrain the applicant to a maximal number of schools
(e.g., twelve for New York City) in her rank-order list. The constraint implies that the mechanism
is no longer strategyproof. Single tie-breaking then results in a portfolio choice identical to that in
this paper: the optimal rank-order list simply lists schools in the optimal portfolio in the order of
the applicant’s preference.8 In this spirit, Idoux (2023) uses a simultaneous-search approach to study
applicant behavior in New York City, where she assumes that applicants account for the correlation

6Only about ten percent of applications receive an unconditional acceptance (Broecke, 2012).
7See https://tinyurl.com/2x3h2cd4.
8Deducing the optimal rank-order list in, say, the “Boston Mechanism,” where one stands a better chance at schools that
one ranks higher is more challenging. In that context, Calsamiglia, Fu, and Güell (2020) use a recursive approach to find
optimal rank-order lists that they then apply to school-choice data in Barcelona.
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across admissions decisions. However, she assumes that applicants follow a behavioral heuristic
so as to avoid the computational burden of comparing all rank-order lists. The algorithms that we
develop would deduce the optimal rank-order list while also sidestepping this challenge.9

When it comes to decentralized college admissions, as in the US, a more suitable model may be
that of Section 5.2: namely, where each college uses the combination of a common score and a match-
specific term. Such models feature in leading theoretical analyses of the college admissions process,
although the focus is largely on the decisions of colleges. Avery and Levin (2010) model how a college
may wish to structure its early admissions program when it cares about both applicants’ caliber (the
common score) and fit (the match-specific term). Che and Koh (2016) study how competitive pres-
sures may induce a college to assign more weight to its match-specific term given the choices of other
colleges. Both of these studies abstract from the portfolio choice problem by assuming that there
are only two colleges and each applicant applies to both. Chade, Lewis, and Smith (2014) model
the decisions of colleges and applicants jointly, restricting attention to two colleges. Most of their
analysis assumes independence but they also discuss settings in which students are uncertain about
their caliber and colleges observe either perfectly correlated signals (as in our baseline framework)
or affiliated noisy signals (analogous to the analysis in Section 5.2). Our analysis complements this
prior literature by offering a detailed study of the application problem and the motive to hedge.10

An empirical literature estimates structural models of school and college admissions, mostly un-
der the assumption that applicants view admission decisions as being stochastically independent;
see, for example, Howell (2010), Fu (2014), and Walters (2018).11 Kapor (2020) flexibly models a cor-
relation structure allowing for a common caliber observed by all colleges (but not applicants) and an
idiosyncratic match-specific term. His structural estimates indicate that applicants are imperfectly
informed about their caliber and therefore perceive correlation across admissions decisions. Our ex-
tension in Section 5.2 hews to the correlation structure of his model; we show that some weight on
the common component motivates applicants to apply to safety schools. This highlights the benefits
of modeling correlation flexibly: if one estimates preferences assuming stochastic independence in
settings where an applicant actually treats admissions as correlated, one might incorrectly infer from
applications to safety schools that the applicant genuinely prefers those schools.

Our results also contribute to the active discussion of segregation in colleges and universities.
Hoxby and Avery (2013) study why elite colleges are missing “low-income high achievers.” They
find that lower-income students are far less likely to apply to selective colleges than higher-income

9She highlights that if applicants rank 12 of 60 programs, there are more than 1020 lists to consider. Our algorithm in the
main text would narrow this down to « 43, 200 lists and that in the online appendix would consider « 4, 320. Our results
also identify how choices from Idoux’s heuristic diverge from the rational benchmark. The heuristic stipulates that when
the applicant decides whether to add a school to her ranked list, subject to a cost, she envisions that she will incur no
further costs. The applicant therefore naively assumes she will add all other schools to the list. Because this overstates the
number of backup options she will have, the applicant effectively becomes more risk loving. Theorem 2 implies that the
resulting list is then more aggressive than that of the rational benchmark.

10Simultaneous search also features in the study of labor markets (Galenianos and Kircher, 2009; Kircher, 2009) where firms
post wage offers and workers apply to several firms simultaneously. Here too, the literature assumes that applications
are accepted independently across firms. Embedding our portfolio problem in this market setting may shed light on
labor markets in which workers perceive hiring decisions as being informative about their future prospects.

11In some cases, such as Fu, Guo, Smith, and Sorensen (2022), the authors suggest that the model ought to allow for
correlation but they assume independence for computational tractability.
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students with the same characteristics; Ajayi (2022) and Ajayi and Sidibe (2022) note similar effects
in their study of secondary-school applications in Ghana. Our work suggests two potential mech-
anisms. Theorem 1 concludes that those who are more pessimistic about their caliber apply less
aggressively. This interpretation is in line with Hoxby and Avery’s focus on how many low-income
high achievers attend school districts that do not support selective public high schools and are un-
likely to have teachers who have attended a selective college. Theorem 2 points to a second contribut-
ing mechanism: even if all applicants have the same beliefs, those with better outside options apply
more aggressively. For example, if higher-income students can afford private schools outside the
public school system, they may target better public schools. We show in the online appendix that this
risk-loving effect emerges also in the independent-admissions framework. Hence, the general point
stands: unequal outside options may exacerbate segregation through applicants’ portfolio choice.12

2 Example

We illustrate our approach using a simple example. Ann can apply to a subset of colleges t1, 2, 3u,
ordered so that College i is her ith favorite. Admissions decisions are based on a common score s,
which may reflect her standing in the pool of all applicants or her performance on an examination
taken after she has chosen her portfolio. If Ann applies to College i, her application is accepted if her
score exceeds its threshold, τi. The timing is as follows: (i) Ann chooses a portfolio; (ii) Ann’s score is
realized, resulting in college admissions decisions; and (iii) Ann chooses a college among those that
accept her application. She obtains her outside option if all her applications are rejected.

For simplicity, suppose that s is distributed uniformly on r0, 1s, and each threshold is in r0, 1s.
Table 1 summarizes for each college Ann’s utility from attending that college, its threshold, and its
(marginal) acceptance rate. The utility of her outside option is 0.

College 1 College 2 College 3
Utility (ui) 1 0.45 0.25

Score Threshold (τi) 0.78 0.5 0.125
Acceptance Rate 0.22 0.5 0.875

Table 1

Optimal Single-College Portfolio: Given a single shot, Ann chooses the college that maximizes
p1 ´ τiqui. Based on the numbers above, this is College 2. Although this problem is trivial, depicting
it graphically is useful for the subsequent analysis. Figure 1 depicts the expected utility of each single-
college portfolio as a coverage problem: each college is represented as a rectangle in a score-utility
space whose horizontal edge depicts its acceptance rate and vertical edge depicts Ann’s utility from
attending it. The optimal portfolio corresponds to the rectangle that covers the most area.

Optimal Two-College Portfolio: Now suppose Ann can apply to two colleges; we establish that the
optimal such portfolio is t1, 3u.

12These results complement recent work by Calsamiglia, Martínez-Mora, and Miralles (2021) and Akbarpour, Kapor, Neil-
son, van Dijk, and Zimmerman (2022) who note similar effects in manipulable centralized matching procedures.
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τ1 1

u1

0

College 1

τ2 1

u2

0

College 2

τ3 1

u3

0

College 3

Figure 1: Single-college portfolios. Each figure plots the scores and thresholds on the horizontal axis and utility
on the vertical axis. The area of the blue rectangle is the expected utility of that single-college portfolio.

To explain why, we first compare portfolios t1, 2u and t1, 3u. For either portfolio, if Ann is ac-
cepted by College 1, she will attend that college and then obtain the same payoff. By the Sure-Thing
Principle, her optimal choice between these two portfolios should condition on her being rejected
by College 1, i.e., obtaining a score less than its threshold of 0.78. Portfolio t1, 2u then delivers a
conditional expected payoff of

Prps ě 0.5|s ă 0.78q ˆ u2 « 0.16. (1)

By contrast, if Ann chooses portfolio t1, 3u, her conditional expected payoff is

Prps ě 0.125|s ă 0.78q ˆ u3 « 0.21. (2)

We dub this the bad-news effect: although College 2 is better ex ante, College 3 is the better backup
option once Ann conditions on the bad news that she has been rejected by College 1.

This bad-news effect is reflected in the coverage problem depicted in Figure 2. For portfolios t1, 2u
and t1, 3u, Ann enrolls in College 1 if her score exceeds τ1. She therefore obtains the area of the
rectangle associated with College 1 in either case. The choice then hinges on how much area the
other college adds, i.e., the area added when she is rejected by College 1. Removing the parts of
all rectangles with scores above τ1 takes away a larger slice of College 2’s rectangle than it does of

Marginal Benefit of College 2
τ3 τ2 τ1 1

u3

u2

0

u1

Marginal Benefit of College 3
τ3 τ2 τ1 1

u3

u2

0

u1

Figure 2: Comparing portfolios t1, 2u and t1, 3u. Each figure shows the marginal benefit of adding a college to
College 1. The dashed area shows regions where Ann is admitted to College 1, the area framed in black is the
overlap between College i and College 1, and the blue area is what remains after removing the overlap.
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College 3’s, thereby making the latter more attractive.13

We turn to the choice between portfolios t1, 3u and t2, 3u. If her score is so low that College
3 rejects her, she obtains her outside option in either case. So Ann should condition on her score
clearing the threshold for College 3. In that event, portfolio t1, 3u delivers an expected payoff of

u3 ` Prps ě 0.78|s ě 0.125q
looooooooooooomooooooooooooon

Accepted by College 1

ˆpu1 ´ u3q « 0.42. (3)

This expression reflects Ann’s certainty that she accrues the payoff of College 3 for sure; with some
chance, she also obtains the additional bump that comes from being accepted by College 1. By con-
trast, the conditional expected payoff of portfolio t2, 3u is

u3 ` Prps ě 0.5|s ě 0.125q
loooooooooooomoooooooooooon

Accepted by College 2

ˆpu2 ´ u3q « 0.35. (4)

Therefore, Ann is better off choosing portfolio t1, 3u.
Let us interpret why. Ann’s choice between t1, 3u and t2, 3u matters only if she is accepted by at

least College 3. Once she conditions on that event, College 3 is effectively her outside option. We
see this reflected in (3) and (4), where she obtains a payoff of u3 whenever she is rejected by a better
college. As u3 ą 0, this outside option is better than that of the original problem. This better outside
option makes Ann more “risk loving” (in an Arrow-Pratt sense) and that induces her to apply more
aggressively. This logic is reflected in Figure 3, where obtaining the outside option of u3 removes
a bottom slice of the rectangles associated with Colleges 1 and 2 but as a larger part of College 2’s
rectangle is removed, College 1 becomes relatively more attractive.

Marginal Benefit of College 1
τ3 τ2 τ1 1

u3

u2

0

u1

Marginal Benefit of College 2
τ3 τ2 τ1 1

u3

u2

0

u1

Figure 3: Comparing portfolios t1, 3u and t2, 3u. Each figure shows the benefit of adding a college to College 3.
As the choice matters only if Ann is at least accepted by College 3, she effectively has an outside option of u3.
The solid blue area shows what remains of each rectangle after removing those with utility lower than u3.

In comparing t1, 2u and t1, 3u, we documented a bad-news effect that induces Ann to be less ag-
gressive and choose College 3 as her backup option if she is rejected by College 1. By contrast, in
comparing t2, 3u and t1, 3u, we described a risk-loving effect that leads Ann to be more aggressive

13Equivalently, the expected payoff of a portfolio equals the total area covered by the union of its rectangles. Because one
does not double count the intersection of rectangles in t1, 2u (or t1, 3u), the other college is relevant only in the region
where Ann is rejected by College 1.
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τ1
Bad News

τ
0

1

0

1

1
Increased Outside Option

1´ τ

Figure 4: The left figure shows the effect of the bad news that Ann’s score is below τ. Transposing each rectangle
over the´45˝ line yields an isometric coverage problem in which her outside option increases from 0 to p1´ τq.

and apply to College 1 once she has College 3 as a backup. We show generally that (i) bad news lead
to less aggressive portfolios (Theorem 1), and (ii) becoming more risk-loving leads to more aggres-
sive portfolios (Theorem 2). Although the two effects appear distinct, each is a mirror image of the
other. We depict this duality in Figure 4: as the expected payoff of a portfolio is equal to the total
area covered by the union of the corresponding rectangles, the comparison of areas does not change
if one transposes each shape around the off-diagonal.

We also see that the optimal two-college portfolio t1, 3u expands in both directions relative to
the optimal single-college portfolio. Theorem 3 shows that this expansion obtains generally: of the
optimal pk ` 1q-portfolio, the top k colleges are more aggressive than the optimal k-portfolio and
the bottom k colleges are less aggressive than the optimal k-portfolio. Hence, the larger portfolio
is more spread out. This intuition combines the two aforementioned forces: (i) by the bad-news
effect, having an additional college at the top makes Ann less aggressive in choosing the other k
colleges as these are relevant only if she is rejected by that top college; (ii) but by the risk-loving effect,
an additional college at the bottom offers her an outside option that makes her more aggressive in
optimally choosing the other k colleges.

To see how these predictions contrast with those of Chade and Smith (2006), suppose each college
has the same acceptance rate as in Table 1 but that admission decisions are stochastically independent
across colleges. Their Theorem 2 implies that the optimal two-college portfolio is t1, 2u; moreover,
the optimal pk` 1q-portfolio nests the optimal k-portfolio and, if replicas of each college are available,
always expands upwards. Thus, regardless of the number of applications Ann makes, she never
applies to College 3 (or a replica thereof). This exemplifies their conclusion that Ann does not apply
to a “safety school”: that is, a college less selective than the optimal single-college portfolio.

3 Model

Ann applies to colleges in C :“ t1, 2, ..., nu. The application process works as follows. Ann first
chooses a portfolio P Ď C of colleges. After this choice is made, a score s in r0, 1s is realized.
College i has a score threshold τi P r0, 1s such that it accepts Ann’s application if s ě τi. Once ad-
missions decisions are made, Ann chooses her outside option or a college that accepts her. Ann’s
utility from attending College i is ui and that from her outside option is uo. The utility assessment
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U :“ puo; u1, . . . , unq specifies utilities based on these outcomes.
Ann’s (ex ante) beliefs about her score are represented by the cumulative distribution function

F. Without loss of generality, we assume that F is atomless and has a strictly positive density on an
interval support. Given Ann’s assessment and beliefs, the expected value of portfolio P is

VpP, U, Fq :“
ż 1

0
max

tiPP:sěτiuYtou
ui dF. (5)

Thus, in choosing her optimal portfolio, Ann anticipates that once admission decisions have been
made, she will choose between her outside option and her favorite among all colleges that admit her.

We make a few assumptions to simplify the exposition.
As Ann does not benefit from applying to a college dominated by another—in terms of desir-

ability or selectivity—or to replicas of the same college, we rule out such colleges. Hence, we order
colleges so that if i ă j, then College i is more desirable (ui ą uj) and selective (τi ą τj).

We also focus on colleges that improve upon Ann’s outside option and to which she stands a
chance of being accepted. These are the rationalizable colleges, C˚pU, Fq :“ ti P C : ui ą uo, Fpτiq ă 1u.
We assume that at least one college is rationalizable.

Finally, we rule out ties. We assume that no two portfolios in C˚pU, Fq achieve the same value:
that is, for every distinct pair P and P̃ in C˚pU, Fq, VpP, U, Fq ‰ VpP̃, U, Fq. Given any belief F, this
assumption holds for almost all assessments.

We now write the value of a portfolio explicitly. For portfolio P, denote its ith highest-ranked
element by Ppiq. Setting FpτP0q :“ 1,

VpP, U, Fq “
|P|
ÿ

i“1

pFpτPpi´1qq ´ FpτPpiqqqmaxtuPpiq , uou. (6)

Thus, the expected value of a portfolio weighs the utility of attending College Ppiq by the probability
that Ppiq is the highest-ranked college in portfolio P that admits Ann.

The value of a portfolio must be balanced against its cost. Ann’s cost depends on the number
of applications she makes: the cost schedule is φ : N Ñ R` Y t8u where φp|P|q is the total cost of
portfolio P. We assume that φ is weakly increasing. A portfolio is optimal if it solves

max
PĎC

rVpP, U, Fq ´ φp|P|qs . (OPT)

To solve (OPT), one may identify the optimal portfolio of k colleges for each k and then choose k
optimally. The (unique) solution to the first stage of this optimization problem is

P˚pk, U, Fq :“ argmax
tPĎC˚pU,Fq:|P|ďku

VpP, U, Fq.

We call this object the optimal k-portfolio. Our results assess how that portfolio shifts with Ann’s
prior (Theorem 1), her assessment (Theorem 2), and the number of applications k (Theorem 3). To
describe these shifts, we order portfolios by their aggressiveness and dispersion, formalized below.
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Definition 1. For non-empty portfolios P and P̃, P is more aggressive than P̃ if any of the following is true:

(a) |P| “ |P̃| and for every i “ 1, . . . , |P|, Ppiq ď P̃piq.
(b) |P| ă |P̃| and for every i “ 1, . . . , |P|, Ppiq ď P̃piq.
(c) |P| ą |P̃| and for every i “ 1, . . . , |P̃|, Ppi`|P|´|P̃|q ď P̃piq.

We denote the aggressiveness order by ěA.

A more aggressive portfolio targets more selective schools. Case (a) compares portfolios of the
same cardinality by the standard vector dominance order, stipulating that the ith best college of P is
higher ranked than that of P̃. The other cases extend this definition to portfolios of different cardi-
nality. Case (b) applies if P has fewer colleges than P̃; P is deemed more aggressive if, according to
case (a), P is more aggressive than the portfolio comprising the best |P| colleges in P̃. If P has more
colleges, case (c) asserts that P is more aggressive if the portfolio comprising its |P̃|-least selective
colleges is nevertheless more aggressive than P̃. We note that ěA is a transitive but incomplete order.

We use this notion of aggressiveness to formalize when one portfolio is more dispersed than an-
other. Let rPsk and tPuk, respectively, denote the k most and least selective colleges in portfolio P.

Definition 2. Portfolio P is more dispersed than P̃ if all of the following are true:

(a) Portfolio P has more colleges: |P| ě |P̃|.
(b) The |P̃|-most selective colleges in P is more aggressive than P̃: rPs|P̃| ěA P̃.
(c) The |P̃|-least selective colleges in P is less aggressive than P̃: tPu|P̃| ďA P̃.

We denote the dispersion order by ěD.

Informally, a larger portfolio P is more dispersed than P̃ if it expands in both directions, to wit,
including colleges higher and lower ranked than those in P̃. Suppose that P̃ has k colleges and
P has more. Definition 2(b) stipulates that the k most selective colleges in P constitute a portfolio
more aggressive than P̃. The notion of more aggressive that we use is that of Definition 1(a): the
highest-ranked college of P̃ is less selective than that of P, the second-highest ranked college of P̃ is
less selective than that of P, and so on and so forth until all colleges in P̃ have been exhausted. This
ranking implies that portfolio P unambiguously expands upwards to include more selective colleges.
Simultaneously, Definition 2(c) stipulates that the portfolio comprising the k least selective colleges
in P is less aggressive than P̃. Thus, the lowest ranked college of P̃ is more selective than that of P, the
second-lowest ranked college of P̃ is also more selective than that of P, and so on and so forth until
all colleges in P̃ have been exhausted. Hence, portfolio P also unambiguously expands downwards
relative to portfolio P̃. Because the larger portfolio unambiguously spreads out in both directions, we
view it as being more dispersed. This order, too, is transitive but incomplete.

A Comparison To Independent Simultaneous Search: Prior to analyzing our setting, we compare
it to the standard setup. For this comparison, we consider a different but equivalent representation
of the common-score problem. Suppose the acceptance rate of College i is αi; moreover, if Ann’s
application is rejected by College i, then it would also be rejected by all higher-ranked colleges. This
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formulation is isomorphic to our setup with Fpτiq “ 1´ αi. We can then rewrite (6) as

|P|
ÿ

i“1

pαPpiq ´ αPpi´1qq
loooooooomoooooooon

Accepted by Ppiq,
Rejected by better colleges in P

maxtuPpiq , uou, (7)

where we normalize αPp0q “ 0.
We contrast this value with that of Chade and Smith (2006), where admissions decisions are inde-

pendent across colleges. The value of a portfolio then is

V IpP, U, αq :“
|P|
ÿ

i

¨

˝αPpiq

i´1
ź

j

p1´ αPpjqq

˛

‚

loooooooooooomoooooooooooon

Accepted by Ppiq,
Rejected by better colleges in P

maxtuPpiq , uou. (8)

In this expression, rejection from colleges better than Ppiq does not affect Ann’s probability of accep-
tance to college Ppiq. By contrast, in the common-score formulation of Equation (7), Ann puts lower
odds on being accepted by Ppiq if she is rejected by better colleges.

The working paper version of Chade and Smith (2006) anticipates the formulation of Equation (7)
and identifies it as a setting in which their marginal improvement algorithm does not reach the op-
timal portfolio. They assert that “It is an exciting open problem to find an algorithm that works efficiently
in these cases: future research beckons.” Below we describe properties of the optimal portfolio and an
efficient algorithm that computes it.

4 Optimal Portfolios

4.1 How Beliefs Affect Portfolio Choice

Suppose Ann is about to submit her applications, but right before doing so, she obtains bad news
that makes her pessimistic about her prospects. How should this influence her portfolio?

Let us first formalize bad news. For an atomless CDF G, the probability that College i is the best
college that would admit Ann is µpi, Gq :“ Gpτi´1q ´ Gpτiq, where we set τ0 “ 1.

Definition 3. Distribution H has bad news relative to G if for every College i and less selective College j,

µpj, Gqµpi, Hq ď µpi, Gqµpj, Hq. (9)

In such a case, we write G ěLR H.

Definition 3 adapts the standard definition of the likelihood ratio dominance order to our setting:
rearranging (9) implies that relative to distribution H, distribution G has a higher likelihood ratio of
College i being the best college that accepts Ann versus any less selective College j.14

14Definition 3 is implied by the standard likelihood-ratio dominance order but is weaker as it imposes restrictions on the
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Theorem 1. Bad news leads to a less aggressive portfolio: G ěLR H ñ P˚pk, U, Gq ěA P˚pk, U, Hq.

We offer some intuition for this result. Suppose that, as a special case of bad news, H is a right
truncation of G: Hpsq “ Gps|s ď τq. This is tantamount to Ann’s learning that her score is below
τ. This news reduces Ann’s odds of admission to each school, but as depicted in Figure 2, it has a
relatively stronger effect at more selective schools. Although bad news can go beyond truncating the
prior, it shares the property that more area is removed from the right, thereby disadvantaging more
selective schools. The logic then suggests that Ann ought to be less aggressive at least in terms of
the most selective college she decides to include in her portfolio. It is merely suggestive, however,
because Ann may conceivably choose a more aggressive second or third choice, which leads to a
countervailing force on the optimal first choice. A significant component of the proof addresses
this possibility and shows that indeed, if G ěLR H, the top choice in the optimal k-portfolio under
distribution G is higher ranked than that under H.

Once this property is established, an inductive argument shows that this force propagates to all
subsequent choices. Suppose Ann chooses Colleges i and j as her top choices under distributions G
and H, respectively. We argue that the following holds:

Gps|s ď τiq ěLR Hps|s ď τiq ěLR Hps|s ď τjq.

The first inequality states that because G ěLR H, rejection from the same top choice (College i) results
in posterior beliefs that remain LR-ordered. The second inequality identifies an amplification in
which, because Ann has chosen a less selective college as her top choice with distribution H, its
rejection conveys even worse news. As the second choice of an optimal k-portfolio given beliefs G and
H, respectively, corresponds to the first choice of an optimal pk´ 1q-portfolio given beliefs Gps|s ď τiq

and Hps|s ď τjq, respectively, it follows from the inductive hypothesis that the second choice under
distribution G is also higher ranked. By induction, this property holds for all subsequent choices.

4.2 How Risk Attitudes Affect Portfolio Choice

Now suppose that, right before applying, Ann obtains a better job with her high school diploma so
that the value of her outside option increases. How does this influence her portfolio? We formalize
this as a change in Ann’s risk sensitivity, in the Arrow-Pratt sense.

Definition 4. Assessment U1 :“ pu1o; u11, . . . , u1nq is more risk loving than U :“ puo; u1, . . . , unq if there
exists a convex non-decreasing transformation ν : R Ñ R such that for every i P C Y tou,

maxtu1i, u1ou “ νpmaxtui, uouq. (10)

In such a case, we write U1 ěRL U.

Definition 4 extends the standard notion of risk loving to allow for an outside option. A special
case of a more risk-loving utility assessment is one in which the utility for each college remains the
same but that of her outside option increases, which we considered in Section 2.

CDF only at the thresholds.
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Theorem 2. Risk-love leads to a more aggressive portfolio: U1 ěRL U ñ P˚pk, U1, Gq ěA P˚pk, U, Gq.

We prove Theorem 2 by exploiting a duality between risk sensitivity and beliefs. Fix a probability
distribution F and two assessments U and U1 where each outside option is normalized to 0 and each
utility is a number in r0, 1s.15 As shown in Figure 4 on p. 9, we can transpose this problem around
the off-diagonal of the unit square to flip utilities and admissions probabilities. Denoting TrUs and
TrU1s as the transposed versions of U and U1, respectively, we show

U1 ěRL U ñ TrU1s ďLR TrUs.

In other words, if U1 is more risk loving than U, then its transposition TrU1s has bad news relative
to the transposition TrUs.16 Theorem 1 implies that Ann applies less aggressively given the beliefs
TrU1s. As transposition flips the labels of colleges, it follows that Ann applies more aggressively
given the more risk-loving assessment U1.

Theorem 2 has implications for how unequal outside options may exacerbate segregation. Say
the schools represent public schools and the outside option is one’s value of attending a private school
that is outside the system. It follows from Theorem 2 that if Ann and Bob have identical preferences
and beliefs but differ in that Bob can afford private school while Ann cannot, then Bob will apply
more aggressively. For example, Bob may target the flagship public university or better schools in the
school district whereas Ann may opt for less selective options. Because students with weaker outside
options apply less aggressively, they are more likely to be matched with less selective schools.

4.3 Larger Portfolios Are More Dispersed

We now study how the optimal portfolio changes if Ann can apply to more colleges or if application
costs fall. We first show that compared to optimal portfolios of a smaller size, those of a larger size are
more dispersed, as per Definition 2. In other words, Ann expands both upwards and downwards.

Theorem 3. Larger optimal portfolios are more dispersed: k1 ě k ñ P˚pk1, U, Fq ěD P˚pk, U, Fq.

Figure 5 illustrates this dispersion: the top k items in the optimal k1-portfolio are more aggressive
than the optimal k-portfolio and that in turn is more aggressive than the bottom k items in the optimal
k1-portfolio. As seen in Section 2, the expansion upwards and downwards can be strict. Indeed, this
will be the case if the set of colleges is “rich” in that the gaps in selectivity and payoffs across colleges
are small. In such a case, it follows that in any optimal portfolio of two or more colleges, Ann applies
to a college lower ranked (and less selective) than the college in her optimal single-college portfolio.

The logic for Theorem 3 invokes both the bad-news and risk-loving effects. Let us compare the
optimal pk` 1q-portfolio to the optimal k-portfolio; the general case then follows by induction. Ob-
serve that the optimal pk` 1q-portfolio can be obtained through a two-stage process where Ann first
picks the highest ranked college for the portfolio (her “first choice”) and then picks k backup options

15For utility U “ puo; u1, . . . , unq, we use the normalization
´

0; 1, . . . , un´uo
u1´uo

¯

.
16The converse is also true but we prove and use only one direction of this implication.
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Figure 5: Illustrating Theorem 3. The optimal k-portfolio is more dispersed for higher values of k.

optimally. These backups matter only if she is rejected by the first choice; hence, they must be op-
timal conditional on that event. But being rejected by her first choice is bad news. The ordering in
Definition 2(c) then follows from Theorem 1: the k optimally chosen backups must be less aggressive
than the optimal k choices based on the prior. This is the force for including safer colleges.

To see why the larger portfolio also moves up, note that the optimal pk` 1q-portfolio is also ob-
tained by first selecting a college to be the lowest ranked in her portfolio (her ultimate “safety”) and
then picking k colleges that improve on that safety. Suppose College i is the safety. Because Ann
applies only to a college that improves on the outside option, its utility ui exceeds that of her out-
side option uo. Ann’s choice of k improvements matters only if she is at least admitted to College
i; otherwise, she obtains uo regardless of her choice. Conditioning on this event—namely s ě τi—
implies that if she is rejected by k improvements, she obtains ui. Optimally choosing k improvements
is therefore equivalent to the modified optimal k-portfolio problem with an outside option of ui. As
this modified problem has a better outside option, Theorem 2 implies that the optimal portfolio of k
improvements is more aggressive than the optimal k-portfolio, establishing Definition 2(b).

This greater-dispersion property implies that larger portfolios expand both upwards and down-
wards. Chade and Smith (2006, Section 5.2) show in a two-college setting that if admission decisions
are stochastically independent, the optimal portfolio expands only upwards. To facilitate compari-
son, we generalize their conclusion in Theorem A.1 in the online appendix. Specifically, we show
that if admissions are independent and each of n colleges has many replicas, then the optimal pk` 1q-
portfolio nests the optimal k-portfolio and is more aggressive (as per Definition 1(c)).17 An impli-
cation is that Ann applies to only those colleges that are higher ranked and more selective than the
college in her optimal single-college portfolio; she does not apply to safety schools.

One can reconcile these disparate predictions using the bad-news and risk-loving effects. With
independent admissions, rejection at her top choice is uninformative about Ann’s prospects at her
backup options, thereby nullifying the bad-news effect. Ann then has no motive to choose less ag-
gressive backup options. But the risk-loving effect remains unabated, as more backup options offer

17For the common-score framework, there is no loss of generality in omitting replicas. For the independent-admissions
framework, replicas are valuable and hence we allow for them in this analysis.
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more insurance. Hence Ann expands only upwards when she can apply to more colleges.
Theorem 3 compares optimal portfolios of different cardinalities, but it also has implications for

how the optimal portfolio varies more generally with the cost schedule. We say that cost schedule φ1

has lower marginal costs than cost schedule φ if for each k P N, φ1pk` 1q ´ φ1pkq ď φpk` 1q ´ φpkq.
Denote the optimal portfolio for a generic cost schedule φ by Ppφq :“ argmaxPĎC rVpPq ´ φp|P|qs.18

Theorem 4. Suppose the cost schedule φ1 has lower marginal costs than φ. Then the optimal portfolio for cost
schedule φ1 is more dispersed than that for φ: Ppφ1q ěD Ppφq.

Theorem 4 is a corollary of the earlier result: lower marginal costs induce Ann to apply to more
colleges and Theorem 3 then implies that the optimal portfolio is more dispersed.

4.4 An Algorithm That Obtains the Optimal Portfolio

Finding the optimal portfolio is complex because the value of adding a college to one’s portfolio
depends on the other colleges in one’s portfolio. Solving this combinatorial optimization problem
by exhaustively checking all 2n portfolios—or even all k-portfolios for a given k—is computation-
ally infeasible for large n. Chade and Smith (2006) show that such computations are unnecessary if
admissions decisions are independent: a greedy algorithm reaches the optimal portfolio in about n2

steps. A property that this algorithm relies upon is that the optimal pk` 1q-portfolio nests the optimal
k-portfolio, which holds in their setting but fails in ours (as illustrated in Section 2).

We instead turn to dynamic programming. We describe an efficient algorithm that delivers the
optimal portfolio in about n3 steps, and in the online appendix, we use the bad-news effect to speed
it up to n2 log n steps.19 Conveniently, this approach also reaches the optimal portfolio in settings in
which the applicant faces a “tier” constraint that limit her to a certain number of schools in each tier.
Such constraints features in several countries including Ghana and Kenya.

For a set of colleges, C 1, denote Ann’s beliefs conditional on being rejected by every college in C 1

by FC1 :“ Fp¨|s ă τi for every i P C 1q; if C 1 is empty, then FC1 coincides with F. Given a belief F̃, we
denote the value of portfolio P by VpP, F̃q and the optimal k-portfolio by P˚pk, F̃q; these expressions
omit the utility assessment U as that is held constant.

Consider the scenario in which all that Ann learns is that she would be rejected by all of the
colleges in C 1 (were she to apply). Her optimal k-portfolio would then solve

V pP˚pk, FC1q, FC1q :“ max
jPC

$

’

’

&

’

’

%

p1´ FC1pτjqquj
looooooomooooooon

Accepted by College j

`FC1pτjq V
`

P˚pk´ 1, FC1Ytjuq, FC1Ytju
˘

loooooooooooooooooomoooooooooooooooooon

Continuation after rejection from College j

,

/

/

.

/

/

-

. (11)

This finds the optimal k-portfolio using a two-stage process in which Ann optimally chooses a college
to be the most selective in her k-portfolio—College j above—anticipating that if she is rejected, the

18As utility assessments and beliefs are fixed, we suppress those arguments.
19For a given k, the running time to find the optimal k-portfolio is kn2. For illustrative purposes, suppose the applicant

were to apply to four colleges from a set of eighty, as in Fu et al. (2022). There are over 1.5 million four-college portfolios;
of these, the algorithm here compares « 25, 000 portfolios, and the faster one in the online appendix compares « 2, 240.
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Let C: :“ C Y t0u, where 0 is a fictitious college that rejects all applications (i.e., τ0 “ 1).

Step 1. For each i P C:, find the optimal single-college portfolio following rejection from i, i.e.,
P˚p1, U, Ftiuq. This is the optimal single-college continuation following i, denoted by Cpi, 1q.

Step 2. For each i P C:, find the optimal two-college portfolio following rejection from i. By
Equation (12), this solves for

j˚ :“ argmax
jPC s.t. tjuďAtiu

 

p1´ Ftiupτjqquj ` FtiupτjqVpCpj, 1q, Ftjuq
(

.

This finds the optimal College j anticipating that if j also rejects, one follows with con-
tinuation Cpj, 1q identified in Step 1. The optimal two-college continuation following i is
Cpi, 2q :“ tj˚u Y Cpj˚, 1q.

. . .

Step k. If k ď n: For each i P C:, find the optimal k-college portfolio following rejection from i,

j˚ :“ argmax
jPC s.t. tjuďAtiu

 

p1´ Ftiupτjqquj ` FtiupτjqVpCpj, k´ 1q, Ftjuq
(

,

where the continuation Cpj, k´ 1q is solved in step pk´ 1q. The optimal k-college continua-
tion following i is then Cpi, kq :“ tj˚u Y Cpj˚, k´ 1q.

If k “ n: Terminate.

Output: This algorithm outputs the optimal k-college portfolio, Cp0, kq, for every k ď n.

Figure 6: An algorithm that achieves the optimal portfolio in Opn3q steps.

continuation is the optimal pk´ 1q-portfolio for her posterior beliefs following rejection, FC1Ytju. This
formulation treats simultaneous search as a dynamic programming problem in which the relevant
“history” is the set of colleges that have rejected Ann.

Equation (11) could be subject to the curse of dimensionality in which the continuation problem
being solved depends on C 1, leading to 2n feasible histories. But given the common-score formulation,
once Ann knows that she is being rejected by all colleges in C 1, she will apply only to colleges less
selective than the least selective college in C 1. It then follows that FC1Ytju “ Ftju. Hence, we can
simplify the Bellman equation to

V pP˚pk, FC1q, FC1q :“ max
jPC s.t. tjuďAC1

 

p1´ FC1pτjqquj ` FC1pτjqV
`

P˚pk´ 1, Ftiuq, Ftju
˘(

. (12)

The continuation problem now depends exclusively on the College j that is chosen here and not on
C 1. Therefore, it suffices to solve only continuation problems following rejection from single-college
portfolios. As this substantially reduces the number of histories that need to be considered, the
optimal portfolio problem can be solved efficiently.

Figure 6 describes an algorithm that does so in about n3 steps. Invoking Equation (12), it recur-
sively computes the optimal portfolio of k colleges following every rejection history (including the
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empty set), beginning with k “ 1. The algorithm has n steps, and at each step, it performs at most n
comparisons for pn` 1q options, leading to a total number of computation steps that is Opn3q. These
computations identify the optimal k-portfolio for each k. One can then compare these portfolios and
optimally choose k, accounting for costs, without increasing the running time.

We generalize this algorithm in the online appendix. First, we use the bad-news effect (Theorem 1)
to reduce the running time to Opn2 log nq. Second, we show that the algorithm can accommodate “tier
constraints” that compel an applicant to apply to a certain number of schools in each tier. Third, we
find that a virtually identical algorithm obtains the optimal portfolio in the independent-admissions
framework. Although the Marginal Improvement Algorithm of Chade and Smith (2006) is more effi-
cient if costs depend only on the number of colleges, the algorithm we develop can also accommodate
tier constraints. Hence, it potentially expands the scope of their study. Moreover, it illustrates that
virtually the same algorithm works for both the independent-admissions and common-score models.

5 Extensions

5.1 Uncertainty About Thresholds

The baseline analysis presumes that Ann is uncertain about her standing but knows perfectly the
thresholds used by colleges. In practice, applicants are likely uncertain about both.20 Continuity
implies that the optimal portfolio remains strictly optimal for small perturbations. Herein, we docu-
ment that a stronger property holds: so long as the relative selectivity of colleges remains unchanged,
the optimal portfolio with uncertain thresholds coincides with that of known thresholds where each
threshold is the “certainty equivalent,” suitably defined.

To this end, let τ̃i be the random variable that denotes College i’s threshold, with a support that
is a subset of rτi, τis. We denote the joint distribution on pτ̃1, . . . , τ̃nq by Z; thresholds may be drawn
with arbitrary correlation. We define the certainty-equivalent threshold for College i to be the τCE

i that
solves FpτCE

i q “ ErFpτ̃iqs. This is the known threshold under which the probability of acceptance
(under score distribution F) coincides with the expected probability of acceptance by College i.21

We say that relative selectivity is known if for every pair of colleges i and j ą i, τi ą τ j: in
other words, the applicant always anticipates i to be more selective than lower-ranked College j. We
view this to be a reasonable assumption as it is consistent with the idea that schools have a known
“pecking order.” Lucas and Mbiti (2012) and Ajayi (2022) document that the relative selectivity of
schools is extremely stable in the context of school admissions in Kenya and Ghana, respectively.

Theorem 5. Suppose relative selectivity is known. Then the optimal k-portfolio with uncertain thresholds
coincides with the optimal k-portfolio in which the threshold of each College i is known to be its certainty-
equivalent threshold τCE

i .

As the argument is straightforward, we offer it here. Using the formulation in Equation (6) on p.

20The UK is an exception insofar as provisional acceptance offers specify a threshold that the A-level must clear.
21A certainty equivalent exists as F is continuous and increasing on its interval support.
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10, observe that the expected value of a portfolio P with uncertain thresholds is

EZ

»

–

|P|
ÿ

i“1

pF pτ̃Ppi´1qq ´ F pτ̃PpiqqqmaxtuPpiq , uou

fi

fl “

|P|
ÿ

i“1

pEZ rF pτ̃Ppi´1qqs ´EZ rF pτ̃PpiqsqqmaxtuPpiq , uous.

The expression on the right-hand side coincides with the expected value of a portfolio P under belief
F and using the (deterministic) certainty-equivalent threshold for each school.22

5.2 College-Specific Scores with a Common Component

Here, we posit a model with a flexible correlation structure to bridge the common- and independent-
score approaches. The setting involves a college obtaining a college-specific score that is a weighted
mix of a common component and an idiosyncratic college-specific term, analogous to the correlation
structures in Avery and Levin (2010), Che and Koh (2016) and Kapor (2020).

In this setting, it is essential to allow colleges to have replicas as an applicant may like to apply
to multiple replicas of the same college (since rejection at one replica need not imply rejection at
the other). Thus, there are n college types 1, 2, . . . , n, and there are R colleges of each type. The
set of colleges C comprises these nR colleges and a generic college is denoted by c. Each college c
obtains its own score sc :“ ρs`

´

a

1´ ρ2
¯

εc, where s is a common component that affects all schools’
assessments, εc is a college-specific term, and ρ P r0, 1s denotes the weight on the common score. For
analytical tractability, we assume that εc’s and s are independent standard normal variables; our
specification guarantees that sc is also standard normal. Each college has a threshold τc P R. Colleges
of the same type have identical score thresholds and offer the same utility. We refer to colleges of
type i as copies or replicas of College i and maintain the assumptions that lower-indexed types are
more desirable and more selective; that is, ui ą uj and τi ą τj if i ă j.

Observe that setting ρ “ 1 reduces to our baseline model whereas setting ρ “ 0 reduces to the
independent-admissions model of Chade and Smith (2006). At intermediate values of ρ, rejection by
a college is bad news for Ann’s prospects at higher-ranked colleges but she nevertheless has a chance.
To interpret this setting, the common component may be the student’s caliber and the school-specific
term εc is a college-specific match quality.

Although a general analysis of this setup is beyond our scope, we obtain results that speak to
the implications of correlation. First, so long as there is some weight on the common component,
large portfolios include colleges of both the most selective and the least selective type. By contrast,
if there is no weight on the common component, large portfolios almost exclusively target the most
selective type. Second, in the context of two-college portfolios, increasing the weight on the common
component never pushes an applicant to a less dispersed portfolio.

Dispersion in Large Portfolios: We first study large portfolios. Suppose that there are infinitely
many colleges of each type. As a benchmark, consider the case of independent admissions.

22Although we emphasize uncertainty in score thresholds, the result also applies when the applicant is uncertain about the
utility of attending each college so long as the relative attractiveness of colleges is known in advance.
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Theorem 6. Suppose colleges place no weight on the common component (ρ “ 0). Then large portfolios target
almost exclusively only the most selective colleges: there exists finite integers M and k such that for all k1 ą k,
the optimal k1-portfolio has at least pk1 ´Mq replicas of College 1.

Theorem 6 reproduces the “upward-expansion” conclusion of Chade and Smith (2006). The logic
is that once Ann has applied to sufficiently many other colleges, she effectively has a high outside
option. This makes her risk loving and willing to gamble on only the most selective colleges.

This is a knife-edge conclusion. If colleges place even slight weight on the common component,
Ann has an incentive to hedge by applying to safety schools. To that end, let College m be the lowest-
ranked college whose utility exceeds that of Ann’s outside option uo.

Theorem 7. Suppose colleges place some weight on the common component (ρ ą 0). Then large portfolios
must feature arbitrarily many copies of the most and least selective colleges: for every integer M, there exists k
such that for all k1 ą k, the optimal k1-portfolio has at least M copies of both Colleges 1 and m.

The logic for why Ann applies to the best college is already in Theorem 6, so we focus on why
she also targets the least selective rationalizable college. If she targets only replicas of College 1, the
marginal benefit of an additional application obtains only if all those applications fail. Such rampant
failure is bad news about the common component of her scores as it would be unlikely to stem
completely from idiosyncratic college-specific terms. This force makes her defensive and leads her to
apply to at least some less selective colleges. Even for low weights on the common component, this
bad-news effect accumulates so that she applies to arbitrarily many copies of College m.

Thus, the motive to hedge and apply to safety schools generalizes beyond the baseline model of
Section 3. If colleges value both a common component—which could reflect recommendation letters,
application essays, and one’s overall standing in the pool—as well as match-specific qualities, an
applicant may seek out colleges that have low selectivity even if they result in low utility.

Increasing Weight on the Common Component: We now study how the optimal portfolio changes
with changes in ρ. Our specification ensures that changing ρ affects only the correlation in admissions
decisions across colleges and not the (marginal) acceptance rate of any single college. So as to make
this comparison meaningful, we focus on portfolios of two colleges each.23

Increasing the weight on the common component can increase the dispersion of a portfolio be-
cause of the forces described in the baseline model. However, it need not always be the case. For
example, increasing ρ could lead to a more aggressive first choice, which dampens the bad-news
effect and thereby induces a more aggressive backup. Symmetrically, it could also lead to a less
aggressive backup, which makes Ann less risk loving and opt for a less aggressive first choice.

However, what cannot happen is that increases in ρ lead the optimal portfolio to become less dis-
persed. Say that a portfolio of two colleges ti1, j1u is less dispersed than ti, ju if i ă i1 ă j1 ă j.24

Theorem 8. If ρ1 ą ρ, the optimal portfolio with weight ρ1 is not less dispersed than that with weight ρ.

23Apart from tractability, we restrict our attention to two colleges because with k ě 3 colleges, there is no straightforward
way to discuss one k-college portfolio as more or less dispersed than another.

24To simplify notation, here we abstract from copies, which allows us to identify each college with its index.
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Here is the central idea. Suppose to the contrary that the optimal portfolio at weight ρ1, ti1, j1u,
were less dispersed than that, ti, ju, at weight ρ. Since College i1 is less selective than College i, being
rejected by i1 is worse news about the common component. Thus, even if the weight on the com-
mon component were ρ, the applicant would already be inclined to choose a less selective backup.
Increasing the weight on the common component to ρ1 amplifies this motive because the bad news
then has even more significant implications for her prospects. While the underlying logic is intuitive,
the proof is intricate because the information conveyed by a rejection from the first college takes
the form of an inequality. Hence, the posterior belief following that rejection has no simple closed
form. We sidestep this issue by using approaches from Plackett (1954) that represent the change in
distribution from changes in ρ through a heat equation.

5.3 Informationally Directed Search

In this section, we study a sequential variant with the common-score structure and compare it to the
portfolio problem. We use the same setup as in Section 3, but for interpretation, we call the colleges
t1, . . . , nu “projects.” Each project i has a threshold τi, and Ann’s attempt at that project succeeds
only if her score s exceeds the threshold. As before, if i ă j, then project i is harder (τi ą τj) and more
rewarding (ui ą uj). We interpret s as Ann’s ability and projects as varying in difficulty such that if
she fails at one project, she is bound to fail at any harder project. In contrast to the college portfolio
problem, Ann tries projects sequentially, observing whether an attempt succeeds before deciding
which project to try next. Of the projects where her attempts succeed, Ann can take to completion
and “consume” only one. But search is with recall as she can go back to a project she attempted
before. Finally, if all of her attempts fail, she obtains her outside option uo.

In this problem, past outcomes are informative about future attempts and one need not stop with
a success. Success at one project instead spurs Ann towards more ambitious projects whereas failure
lowers her ambition. Because Ann is forward-looking, she takes this into account in choosing where
to start. To see this logic, suppose that Ann faces a cost function in which she can attempt up to k
projects for free but no more. We call the optimal strategy in this setting her optimal k-strategy and
compare it to the optimal portfolios of simultaneous search.

Theorem 9. The optimal k-strategy achieves the same value as the optimal p2k ´ 1q-portfolio.

Theorem 9 shows that sequential search offers significant gains: searching k projects sequentially
results in the same payoff as simultaneous search with p2k´ 1q projects. We illustrate why in Figure 7.
Suppose Ann can try at most three projects. She first attempts the median project of the optimal
(simultaneous) seven-portfolio. If that succeeds, she aims higher and attempts the second-best project
in that portfolio, whereas if it fails, she shifts to the second-worst project in that portfolio. Further
successes and failures direct her search locally so that she achieves the same value as she would with
the optimal seven-portfolio.

This strategy exemplifies features of informationally directed search. The optimal strategy would
be qualitatively different were the success at each project independent of those at other projects. In
that case, nothing would be learned from past attempts. Chade and Smith (2006) study that Weitz-
man problem with a constant marginal cost. They show that the optimal strategy stops at the first
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Start Here

Figure 7: The optimal 3-strategy. Projects in the optimal 7-portfolio are ordered in descending order of diffi-
culty. Blue and red arrows show what Ann tries following success and failure respectively.

success and is more aggressive and broader than the optimal simultaneous portfolio. In the online
appendix, we show that these properties may fail here because our searcher has the additional motive
to start with the project that best guides her future search. We have not seen this particular process of
informationally directed search studied in prior work; it would be interesting to obtain more general
predictions and compare those to precedents such as Callander (2011) and Urgun and Yariv (2023).
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A Main Appendix

A.1 Proof of Theorem 1 on p. 13

Proof. The proof of this argument involves three cases, and a double induction argument.

Case 1: |P˚pk, U, Gq| ă k.

Let j˚ be the least selective school on P˚pk, U, Gq. Our assumptions guarantee that µpj˚, Gq ą 0.
Since G ěLR H this implies that for any i ă j˚ such that µpi, Gq “ 0 we also have that µpi, Hq “
0. Furthermore, for any i, j P P˚pk, U, Gq such that i ă j, if µpj, Hq “ 0 then µpi, Hq “ 0 (by the
definition of LR-dominance since µpi, Gq ą 0 and µpj, Gq ą 0 as they are on the portfolio). Therefore,
if |P˚pk, U, Hq| “ k then it consists of a subset of the colleges in P˚pk, U, Gq and some colleges lower
ranked than j˚. Otherwise, |P˚pk, U, Hq| ă k in which case it consists of all colleges in P˚pk, U, Gq
that are less selective than some i˚ in addition to some colleges less selective than j˚. In either case,
P˚pk, U, Gq ěLR P˚pk, U, Hq.

Case 2: |P˚pk, U, Hq| ă |P˚pk, U, Gq| “ k .

Let i˚ be the most aggressive college on P˚pk, U, Hq. Our assumptions guarantee that µpi˚, Hq ą 0.
Since G ěLR H this implies that for any i˚ ă j such that µpj, Hq “ 0 we also have that µpj, Gq “ 0.
Furthermore, for any i, j P P˚pk, U, Hq such that i ă j, if µpi, Gq “ 0 then µpj, Gq “ 0 (by the definition
of LR-dominance since µpi, Hq ą 0 and µpj, Hq ą 0 as they are on the portfolio). Therefore, since
|P˚pk, U, Gq| “ k, it consists of a subset of the colleges in P˚pk, U, Hq and some colleges more selective
than i˚, and so P˚pk, U, Gq ěLR P˚pk, U, Hq.

Case 3: |P˚pk, U, Hq| “ |P˚pk, U, Gq| “ k

We prove that P˚pk, U, Gq ěA P˚pk, U, Hq by induction on k.

Base Step: (k “ 1)

If P pk, U, Hq “ tiu then because i is the uniquely optimal single-college portfolio, it follows that
for every College j,

Vptiu, U, Hq ´ uo “ p1´ H pτiqq pui ´ uoq ě
`

1´ H
`

τj
˘˘

puj ´ uoq “ Vptju, U, Hq ´ uo. (13)

Consider a College j that is lower ranked than i. Therefore, j ą i. Observe that

p1´ G pτiqq
`

1´ H
`

τj
˘˘

“
ÿ

l,pďi

µpl, Gqµpp, Hq `
ÿ

lďiăpďj

µpl, Gqµpp, Hq

ě
ÿ

l,pďi

µpl, Gqµpp, Hq `
ÿ

lďiăpďj

µpp, Gqµpl, Hq

“ p1´ H pτiqq
`

1´ G
`

τj
˘˘

,
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where the first line follows by definition, the second follows from G ěLR H, and the third follows by
definition. Multiplying (13) with the inequality above yields

p1´ G pτiqq
`

1´ H
`

τj
˘˘

p1´ H pτiqq pui ´ uoq ě p1´ H pτiqq
`

1´ G
`

τj
˘˘ `

1´ H
`

τj
˘˘

puj ´ uoq.

We note that p1´ H pτiqq ą 0 (otherwise the empty portfolio is optimal, contradicting our as-
sumptions, and that

`

1´ H
`

τj
˘˘

ě p1´ H pτiqq, since τj ă τi. Hence, we can divide both sides of the
inequality by the positive term

`

1´ H
`

τj
˘˘

p1´ H pτiqq and obtain

p1´ G pτiqq pui ´ uoq ě
`

1´ G
`

τj
˘˘

puj ´ uoq,

and therefore P˚pk, U, Gq ‰ tju for any j ą i. Hence, P˚pk, U, Gqmust be at least as aggressive as tiu.

Inductive Step: (k ą 1)
Suppose that the statement holds for all portfolio sizes strictly smaller than k. We show that this

implies that it also holds for portfolios of size k.
We begin by noting that if P˚p1q pk, U, Gq ď P˚p1q pk, U, Hq then the result follows from the induc-

tive hypothesis. This follows from two observations. First,

P˚ pk, U, Gq “
!

P˚p1q pk, U, Gq
)

ď

P˚
´

k´ 1, ū, G
´

¨ | s ă τP˚p1qpk,U,Gq

¯¯

.

The reason is that a student applying to P attends Pp1q whenever accepted to Pp1q, and so the rest of
her portfolio must be optimal conditional on being rejected from Pp1q. More generally,

P˚ pk, U, Gq “
!

P˚p1q pk, U, Gq , . . . , P˚pjq pk, U, Gq
)

ď

P˚
´

k´ j, ū, G
´

¨ | s ă τP˚pjqpk,U,Gq

¯¯

.

Second, if τ ě τ1 then G p¨ | s ă τq ěLR H p¨ | s ă τ1q. This follow by the transitivity of ěLR, since
G p¨ | s ă τq ěLR G p¨ | s ă τ1q and G p¨ | s ă τ1q ěLR H p¨ | s ă τ1q.

Therefore, it suffices to show that P˚p1q pk, U, Gq ď P˚p1q pk, U, Hq, which is what we do in the
remainder of this proof.

Suppose otherwise. Let m ě 1 be the maximal index with P˚pmq pk, U, Gq ą P˚pmq pk, U, Hq. By
the inductive hypothesis and the two observations above, P˚pjq pk, U, Gq ď P˚pjq pk, U, Hq for all j ą m
(this condition may be vacuous if m “ k), and P˚pjq pk, U, Gq ą P˚pjq pk, U, Hq for all j ď m.

We now create a chain of portfolios Q0, . . . , Qm. To simplify notation, for a general portfolio
Q, we sometimes write Qi instead of Qpiq to denote the ith ranked college. To simplify notation,
we denote P :“ P˚pk, U, Gq and R :“ P˚pk, U, Hq. Let Q0, Q1, . . . , Qm be portfolios such that Qi “
 

Rp1q, . . . , Rpiq, Ppi`1q, . . . , Ppkq
(

. In other words, Qi selects the top i colleges from portfolio R and
the remaining k ´ i colleges from P.25 Observe that for each j ď i ď m we have Qpjqi “ Rpjq and
Qj ěA Qj´1. It also follows that Qm ěA P and Qm ěA R.

25Since |P| “ |R| “ k, the definition of m guarantees that for each i ď m we have |Qi| “ k.
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For D P tG, Hu and j ď m we have

VpQj, U, Dq ´VpQ0, U, Dq “
j
ÿ

i“1

VpQi, U, Dq ´VpQi´1, U, Dq.

Next, we note that for i ď m,

VpQi, U, Dq ´VpQi´1, U, Dq “ pDpτRi´1q ´DpτRiqq puRi ´ uPiq ´ pDpτRiq ´DpτPiqq puPi ´ uPi`1q.26

Since Q0 “ P :“ P˚pk, U, Gq, we have

VpQj, U, Gq ´VpQ0, U, Gq ď 0. (14)

We prove by induction on j that this implies

VpQj, U, Hq ´VpQ0, U, Hq ď 0.

Base Step (j “ 1): Observe that

0 ď VpQ1, U, Gq ´VpQ0, U, Gq “ p1´ GpτR1qq puR1 ´ uP1q ´ pGpτR1q ´ GpτP1qq puP1 ´ uP2q,

where the inequality is (14) and the equality is computation. Therefore,

p1´ GpτR1qq puR1 ´ uP1q ď pGpτR1q ´ GpτP1qq puP1 ´ uP2q.

Additionally, since G ěLR H

pGpτR1q ´ GpτP1qq p1´ HpτR1qq ď p1´ GpτR1qq pHpτR1q ´ HpτP1qq .

Since all terms in the two inequalities above are nonnegative, we can multiply them to obtain

pGpτR1q ´ GpτP1qq p1´ HpτR1qq p1´ GpτR1qq puR1 ´ uP1q ď

p1´ GpτR1qq pHpτR1q ´ HpτP1qq pGpτR1q ´ GpτP1qq puP1 ´ uP2q.

Since R1 is in P˚pk, u, Hqwe have p1´ HpτR1qq ą 0 and so p1´ GpτR1qq ą 0 since G ąLR H. Addition-
ally, pGpτR1q ´ GpτP1qq ą 0, as otherwise VpQ1, U, Gq ą VpP, U, Gq, contradicting the optimality of P.
We can therefore divide both sides of the inequality by p1´ GpτR1qq pGpτR1q ´ GpτP1qq and obtain

p1´ HpτR1qq puR1 ´ uP1q ď pHpτR1q ´ HpτP1qq puP1 ´ uP2q

which implies

VpQ1, U, Hq ´VpQ0, U, Hq “ p1´ HpτR1qq puR1 ´ uP1q ´ pHpτR1q ´ HpτP1qq ¨ puP1 ´ uP2q ď 0.

26We use the notational convention that for a portfolio Q of size k, uQk`1 “ uo and τQ0 “ 1.

26



Inductive Step (j ą 1): We assume that the statement holds for all j1 ă j. The following notation
will be useful. For D P tG, Hu and l ď m, denote W l

D :“ pDpτRl´1q ´DpτRlqq puRl ´ uPlq and Ll
D :“

pDpτRlq ´DpτPlqq puPl ´ uPl`1q. W l
D (respectively Ll

D) represent the gains (losses) for an agent whose
beliefs are given by D from the changing her portfolio from Ql´1 to Ql (she gains if she ends up
attending the Qplql “ Rl and she loses if her score suffices for Qplql´1 “ Pl but not for Qplql “ Rl).

Additionally, denote qRl :“ µpRl ,Hq
µpRl ,Gq .

27

Because Q0 is optimal under distribution G, we know that
řj

l“1 Ll
G ě

řj
l“1 W l

G for all j ď m.
Observe that

j
ÿ

l“1

Ll
H “ Lj

H `

j´1
ÿ

l“1

´

Ll
H ´W l

H `W l
H

¯

“ Lj
H `

j´1
ÿ

l“1

W l
H `

j´1
ÿ

l“1

´

Ll
H ´W l

H

¯

ě qRj Lj
G `

j´1
ÿ

l“1

W l
H `

j´1
ÿ

l“1

qRl

´

Ll
G ´W l

G

¯

,

where the inequality follows from W l
H{W

l
G “ pHpτRl´1q ´ HpτRlqq { pGpτRl´1q ´ GpτRlqq being bounded

above by qRl , and Ll
H{L

l
G “ pHpτRlq ´ HpτPlqq { pGpτRlq ´ GpτPlqq being bounded below by qRl for all

l ď m. By rewriting the RHS of the above inequality, it then follows that

j
ÿ

l“1

Ll
H ě qRj Lj

G `

j´1
ÿ

l“1

W l
H `

j´1
ÿ

l“1

qRj

´

Ll
G ´W l

G

¯

`

j´1
ÿ

l“1

j´1
ÿ

b“l

pqRb ´ qRb`1q

´

Ll
G ´W l

G

¯

“ qRj Lj
G `

j´1
ÿ

l“1

W l
H `

j´1
ÿ

l“1

qRj

´

Ll
G ´W l

G

¯

`

j´1
ÿ

b“1

pqRb ´ qRb`1q

b
ÿ

l“1

´

Ll
G ´W l

G

¯

“ qRj Lj
G `

j´1
ÿ

l“1

W l
H `

j´1
ÿ

l“1

qRj

´

Ll
G ´W l

G

¯

`

j´1
ÿ

b“1

pqRb ´ qRb`1q pVpQ0, U, Gq ´VpQb, U, Gqq

ě qRj Lj
G `

j´1
ÿ

l“1

W l
H `

j´1
ÿ

l“1

qRj

´

Ll
G ´W l

G

¯

“

j´1
ÿ

l“1

W l
H `

j
ÿ

l“1

qRj

´

Ll
G ´W l

G

¯

` qRjW j
G

“ qRj

`

VpQ0, U, Gq ´VpQj, U, Gq
˘

`

j´1
ÿ

l“1

W l
H ` qRjW j

G ě

j´1
ÿ

l“1

W l
H ` qRjW j

G ě

j
ÿ

l“1

W l
H,

where the second inequality follows from qRb being increasing in b, and VpQ0, U, Gq ě VpQb, U, Gq.
The third inequality uses the optimality of VpQ0, U, Gq again, and that qRj is nonnegative. The fourth
and final inequality follows from W l

H{W
l
G being bounded above by qRl .

To complete the proof, we note that

V
´

tP1, P2, . . . , Pm, Rm`1, . . . , Rku, U, H
¯

´VpR, U, Hq “
m
ÿ

l“1

´

Ll
H ´W l

H

¯

` pHpτRmq ´ HpτPmqq puPm`1 ´ uRm`1q ą 0

27This expression is well defined as µpRl , Gq ą 0 since otherwise R “ P˚pk, U, Gq is not optimal (as it would be beneficial
for the agent to replace Rl with a more aggressive option) or not minimal (the agent can drop Rl from her portfolio).
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contradicting the optimality of P˚pk, U, Hq :“ R. The expression is nonnegative since we have shown
above that the first term is nonnegative, and the second expression is the product of two nonnegative
terms (uPm`1 ě uRm`1 by the definition of m, and HpτRmq ě HpτPmq since uRm ą uPm and so τRm ą τPm ).
Since ties are ruled out, it must be strictly positive.

A.2 Proof of Theorem 2 on p. 14

Proof. Our argument proceeds in multiple steps.

Step 1: There is no loss of generality in normalizing utilities.

For utility assessment U :“ puo; u1, . . . , unq, we denote its normalization by

NrUs :“ p0; ũ1, . . . , ũnqwhere ũi :“ max
"

ui ´ uo

u1 ´ uo
, 0
*

. (15)

We argue that there is no loss of generality in making this normalization. Consider a utility assess-
ment U, distribution G, and a portfolio P. Recall that Ppiq denotes the ith best item in the portfolio.
Using GpτP0q “ 1, we can write the value of a portfolio as

VpP, U, Gq “
ż 1

0
max

tiPP:sěτiu
maxtui, uoudG

“

|P|
ÿ

i“1

maxtuo, uPpiqu pGpτPpi´1qq ´ GpτPpiqqq

“ uo `

|P|
ÿ

i“1

maxt0, uPpiq ´ uou pGpτPpi´1qq ´ GpτPpiqqq

“ uo ` pu1 ´ uoq

|P|
ÿ

i“1

ũPpiq pGpτPpi´1qq ´ GpτPpiqqq

“ uo ` pu1 ´ uoqVpP, NrUs, Gq,

where the first equality is the definition of a portfolio’s value (Equation 5 on p. 10), the second
equality is calculating the integral, the third equality is algebra, the fourth equality substitutes (15),
and the final equality uses the definition of VpP, NrUs, Gq. Hence, normalizing utilities does not affect
the relative ranking of the value of portfolios: for portfolios P and P1,

VpP, U, Gq ě VpP1, U, Gq ô VpP, NrUs, Gq ě VpP1, NrUs, Gq.

The normalization also maintains the same risk-loving order:

U1 ěRL U ô NrU1s ěRL NrUs.

In light of the above, we restrict attention to normalized utility assessments. Note that in a normal-
ized utility assessment, U, the utility of each College i, ui, is in r0, 1s, the utility of the best college, u1,
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is equal to 1, and the value of the outside option, uo, equals 0.

Step 2: We define the transposition.

In this step, we show how to transpose utilities and probabilities, formalizing the idea of Figure 4.
Conceptually, the transposition does two flips. First, for each college, it flips the utility and the
acceptance probability so that a college with a high utility and low acceptance probability flips into
being a college with low utility and high acceptance probability, (ii) to order colleges descending in
the order of Ann’s preferences, we also flip the order of colleges.

Given a distribution of scores G, let λpGq “ pGpτ1q, . . . , Gpτnqq denote a vector of rejection proba-
bilities for the n colleges. Analogously, given a vector λ P r0, 1sn where λj ď λi for j ě i, let πp¨, λq be
any CDF such that πpτi, λq “ λi. In other words, πp¨, λq selects a probability distribution on scores
that generates the vector of rejection probabilities λ.28

We transpose utilities into probabilities as follows. For a vector x P r0, 1sn, let Trxs be the trans-
posed vector p1 ´ xn, . . . , 1 ´ x1q. Given a normalized utility assessment, U :“ p0; u1, . . . , unq, let
wpUq :“ pu1, . . . , unq represent the utility of prizes. For a normalized utility assessment U, we
define the transposed distribution of scores GTpUq as the CDF G such that for every score s,

Gpsq “ π ps, TrwpUqsq .

Therefore, GTpUq is a score distribution that generates the vector of rejection probabilities p1´un, . . . , 1´
u1q.

Analogously, let us transpose probabilities into utilities. Given a distribution of scores G, we say
that a utility assessment U :“ p0; u1, . . . , unq is its transposition UTpGq if

wpUq “ TrλpGqs.

In other words, in UTpGq, the value of the outside option is 0, and the utility of being accepted by
Colleges 1 through n is respectively 1´ Gpτnq, . . . , 1´ Gpτ1q.

Notice that transposition flips the order of colleges. The transposition maps the ith ranked col-
lege, College i, that offers utility ui and rejection probability Gpτiq to the college ranked pn` 1´ iqth

with utility 1´ Gpτiq and rejection probability 1´ ui. Accordingly, we map portfolios in the original
problem to those in the transposed problem using the operator T : 2N Ñ 2N where

T rPs :“ ti P C : n` 1´ i P Pu .

Because transposition flips the order of colleges, it follows that if P ěA P̃, then T rPs ďA T rP̃s.
We also note that if a utility assessment U and distribution G satisfy our assumptions, so does the

transposed model with utility assessment UTpGq and distribution GTpUq.

Step 3: Transposition leads to an isomorphic problem.

28It suffices to consider probability distribution functions that are constant on intervals of the form pτi, τi`1q.
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In this step, we prove that transposing utilities and acceptance probabilities leads to a problem
that is isomorphic to the original problem. Specifically, we show that

V pP, U, Gq “ VpT rPs, UTpGq, GTpUqq. (16)

Therefore for every k, P˚pk, U, Gq “ T rP˚pk, UTpGq, GTpUqqs.
Consider a normalized utility profile U and a distribution G. Consider a portfolio P where as

usual, Ppiq denotes the ith ranked item in the portfolio P. Let |P| “ k. Observe that we can write the
value of a portfolio as

V pP, U, Gq “ uPp1q p1´ GpτPp1qqq
looooooomooooooon

Accepted by Pp1q

`

k
ÿ

i“2

uPpiq pp1´ GpτPpiqqq ´ p1´ GpτPpi´1qqqq
looooooooooooooooooooomooooooooooooooooooooon

Accepted by Ppiq but not by Ppi´1q

. (17)

The above expression computes the value of a portfolio based on Ann obtaining the payoff of College
Ppiq if she is accepted by that college but rejected by every higher ranked college in portfolio P. Re-
arranging the RHS of the above expression yields

˜

k´1
ÿ

i“1

p1´ GpτPpiqqq puPpiq ´ uPpi`1qq

¸

` p1´ GpτPpkqqquPpkq . (18)

Let Û :“ UTpGq be the transposition of the distribution and Ĝ :“ GTpUq be a transposition of the
utilities. Finally, let P̂ :“ T rPs be the “transposed” portfolio. Observe that by construction, |P̂| “ k,
ûP̂piq “ 1´ GpτPpk`1´iqq, and ĜpτP̂piqq “ 1´ uPpk`1´iq . These substitutions in (18) yield

ûP̂p1qp1´ ĜpτP̂p1qqq `

k
ÿ

i“2

ûP̂piq
`

p1´ ĜpτP̂piqqq ´ p1´ ĜpτP̂pi´1qqq
˘

,

which by comparison to (17) is equal to V
`

P̂, Û, Ĝ
˘

.

Step 4: Being more risk loving implies bad news in the transposed problem.29

We show that for normalized utility assessments U and U1,

U1 ěRL U ñ GTpU1q ďLR GTpUq.

Observe that U1 ěRL U implies that there exists a convex nondecreasing function ν : R Ñ R such
that νp0q “ 0, νp1q “ 1, and for every i P t1, . . . , Nu, u1i “ νpuiq. We argue that for every i and j ą i,

pu1i`1 ´ u1iqpuj`1 ´ ujq ě pui`1 ´ uiqpu1j`1 ´ u1jq. (19)

To see why the above inequality holds, consider the following two cases. First, if ui`1 “ ui then the
right hand side is equal to 0 and since both sides are nonnegative we are done. Second, if uj`1 “ uj

29The converse is also true, but we do not use that direction.
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then u1j`1 “ u1j and both sides are equal to 0. Otherwise, (19) can be rewritten as

u1i`1 ´ u1i
ui`1 ´ ui

ě
u1j`1 ´ u1j
uj`1 ´ uj

or equivalently

ν pui`1q ´ ν puiq

ui`1 ´ ui
ě

ν
`

uj`1
˘

´ ν
`

uj
˘

uj`1 ´ uj

which follows from the convexity of ν.
We use (19) to argue that GTpU1q ďLR GTpUq. Let GTpU1q “ H̃ and GTpUq “ G̃. Note that

µpi, H̃q “ H̃pτi´1q ´ H̃pτiq “ u1n`1´i ´ u1n`2´i, (20)

where the first equality is the definition of µpi, Hq and the second follows from H “ GTpUq. Therefore,
it follows that for i ă j,

µpj, G̃qµpi, H̃q “ pun`1´j ´ un`2´jqpu1n`1´i ´ u1n`2´iq

ď pu1n`1´j ´ u1n`2´jqpun`1´i ´ un`2´iq

“ µpi, G̃qµpj, H̃q,

where the first equality uses (20), the second uses (19), and the third uses (20). Therefore, we see that
GTpU1q ďLR GTpUq.

Step 5: We now combine these steps to complete the proof.

Suppose that U1 ěRL U. As noted in Step 1, it is without loss of generality to treat U and U1 as
normalized utility assessments. For a distribution G, let P1 “ P˚pk, U1, Gq and P “ P˚pk, U, Gq. By
Step 4,

U1 ěRL U ñ GTpU1q ďLR GTpUq.

Therefore, by Theorem 1, for every k,

P˚pk, UTpGq, GTpUqq ěA P˚pk, UTpGq, GTpU1qq. (21)

It then follows that

P˚pk, U, Gq “ T rP˚pk, UTpGq, GTpUqqs ďA T rP˚pk, UTpGq, GTpU1qqs “ P˚pk, U1, Gq,

where the equalities follow from Step 3 and the ordering follows from (21).
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A.3 Proof of Theorem 3 on p. 14

Proof. Consider any k ě 1 and suppose k̃ “ k` 1. We consider two cases below.
The first case applies if |P˚pk` 1, U, Fq| ď k; i.e., the optimal pk` 1q-portfolio has no more than k

colleges. Then P˚pk, U, Fq “ P˚pk` 1, U, Fq, which trivially implies the desired conclusion.
The second case applies if |P˚pk` 1, U, Fq| “ k` 1; i.e., the optimal pk` 1q-portfolio has pk` 1q

colleges. Denote the highest ranked college in P˚pk` 1, U, Fq by College i and let Gpsq “ Fps|s ă τiq

be Ann’s belief about her score conditional on being rejected by that college. Observe that G ďLR F.
Because Ann chooses the other colleges in P˚pk` 1, U, Fq assuming she is rejected from College i, it
follows that

P˚pk` 1, U, Fq “ tiu Y P˚pk, U, Gq. (22)

Hence,

tP˚pk` 1, U, Fquk “ P˚pk, U, Gq ďA P˚pk, U, Fq,

where the equality follows from (22) and the ordering follows from G ďLR F and Theorem 1.
Similarly, let College j be the lowest ranked college in P˚pk`1, U, Fq. Let U1 be a utility assessment

that is identical to U but the outside option is uj. Note that U1 ěRL U. Since Ann choose all colleges
other than j in the portfolio assuming that she is accepted by College j (since it is her lowest ranked
college), it follows that

P˚pk` 1, U, Fq “ tju Y P˚pk, U1, Fq. (23)

Therefore,

rP˚pk` 1, U, Fqsk “ P˚pk, U1, Fq ěA P˚pk, U, Fq,

where the equality follows from (23) and the ordering follows from U1 ěRL U and Theorem 2.
Thus, we have shown that Theorem 3 holds for every k ě 1 and k̃ “ k ` 1. The argument for

general k̃ ą k then follows from the transitivity of ěA.
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Online Appendices (Not for Publication)

The online appendices are organized as follows:

• Appendix B describes how to speed up the algorithm using Theorem 1, accommodate tier con-
straints, and how this algorithm can solve for the optimal portfolio also when admission deci-
sions are stochastically independent.

• Appendix C collects some new results for the simultaneous search framework with indepen-
dent admissions.

• Appendix D collects all examples and proofs for Section 5.2.

• Appendix E collects all examples and proofs for Section 5.3.

B Algorithms for Solving for the Optimal Portfolio

B.1 Speeding up the Algorithm Using Theorem 1

The main text presents an algorithm for calculating the optimal portfolio in Opn3q computation steps,
where each step of the algorithm requires Opn2q computation steps and the algorithm comprises n
steps. We use Theorem 1 to reduce the number of computation steps required for each step of the
algorithm to Opn log nq. Therefore, Opn2 log nq computation steps are required in total.

We proceed with a faster routine for executing Step k of our algorithm. Recall that C: :“ C Y t0u,
where 0 is a fictitious college that rejects all applications (i.e., τ0 “ 1).

Stage 1. For i1 “ medianpC:q (throughout, when the median is not an integer, we round it down to
the nearest integer) find the optimal k-college portfolio following rejection from i:

j˚1 :“ argmax
jPC s.t. tjuďAti1u

 

p1´ Fi1pτjqquj ` Fi1pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj˚1 , k´1q is solved in step pk´1q. The optimal k-college continuation following
i1 is then Cpi1, kq :“ tj˚1 u Y Cpj˚, k´ 1q.

Stage 2.1. For i2.1 “ median pt0, . . . , i1 ´ 1uq, find the optimal k-college portfolio following rejection
from i2.1:

j˚2.1 :“ argmax
jPC s.t. tj˚1 uďAtjuďAtiu

 

p1´ Fi2.1pτjqquj ` Fi2.1pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k ´ 1q is solved in step pk ´ 1q. The restriction to colleges at least as
aggressive as j˚1 is justified by Theorem 1. The optimal k-college continuation following i2.1 is then
Cpi2.1, kq :“ tj˚2.1u Y Cpj˚2.1, k´ 1q.
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Stage 2.2. For i2.2 “ median pti1 ` 1, . . . , nuq, find the optimal k-college portfolio following rejection
from i2.2:

j˚2.2 :“ argmax
jPC s.t. tjuďAtj˚1 u

 

p1´ Fi2.2pτjqquj ` Fi2.2pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k ´ 1q is solved in step pk ´ 1q. The restriction of colleges no more ag-
gressive than j˚1 is justified by Theorem 1. The optimal k-college continuation following i2.2 is then
Cpi2.2, kq :“ tj˚2.2u Y Cpj˚2.2, k´ 1q.
...

Stage m.1. For im.1 “ median
` 

0, . . . , ipm´1q.1 ´ 1
(˘

, find the optimal k-college portfolio following
rejection from im.1:

j˚m.1 :“ argmax
jPC s.t. tj˚

pm´1q.1uďAtjuďAtiu

 

p1´ Fim.1pτjqquj ` Fim.1pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k ´ 1q is solved in step pk ´ 1q. The restriction of colleges no more ag-
gressive than j˚

pm´1q.1 is justified by Theorem 1. The optimal k-college continuation following im.1 is then
Cpim.1, kq :“ tj˚m.1u Y Cpj˚m.1, k´ 1q.

Stage m.2. For im.2 “ median
` 

ipm´1q.1 ` 1, . . . , ipm´1q.2 ´ 1
(˘

, find the optimal k-college portfolio
following rejection from im.2:

j˚m.2 :“ argmax
jPC s.t. tj˚

pm´1q.2uďAtjuďAtj˚
pm´1q.1u

 

p1´ Fim.2pτjqquj ` Fim.2pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k ´ 1q is solved in step pk ´ 1q. The restriction of colleges no more
aggressive than j˚

pm´1q.2 and no less aggressive than j˚
pm´1q.1 is justified by Theorem 1. The optimal

k-college continuation following im.2 is then Cpim.2, kq :“ tj˚m.2u Y Cpj˚m.2, k´ 1q.
...

Stage m.2m´1. For im.2m´1 “ median
´!

ipm´1q.2m´2 ` 1, . . . , n
)¯

, find the optimal k-college portfolio
following rejection from im.2m´1 :

j˚m.2m´1 :“ argmax
jPC s.t. tjuďAtj˚

pm´1q.2m´2u

!

p1´ Fim.2m´1 pτjqquj ` Fim.2m´1 pτjqVpCpj, k´ 1q, Ftjuq
)

.

where the continuation Cpj, k´ 1q is solved in step pk´ 1q. The restriction of colleges no less aggres-
sive than j˚

pm´1q.2m´2 is justified by Theorem 1. The optimal k-college continuation following im.2m´1 is
then Cpim.2m´1 , kq :“ tj˚m.2m´1u Y Cpj˚m.2m´1 , k´ 1q.

Note that by the m-th stage, the routine solves for 1` 2` ¨ ¨ ¨ ` 2m´1 “ 2m ´ 1 optimal k-college
continuations. Hence, the routine requires at most rlog2pn ` 1qs stages to complete Step k of the
algorithm. Furthermore, using Theorem 1 we restricted the arguments under the argmax to be such
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that in each stage of the routine no more than 3n{2 options must be considered. For example, in
Stage 2.1 the routine only searches colleges that are at least as aggressive as j˚1 while in Stage 2.2 it
only searches colleges that are no more aggressive as j˚1 , and so j˚1 is considered twice and each of the
other n´ 1 colleges is considered at most once.

In sum, the routine requires only Opn log nq calculation steps for each step of the algorithm, bring-
ing the number of calculation steps required by all n steps of the algorithm to Opn2 log nq.

B.2 Accommodating Tier Constraints

Some education systems impose constraints not only on the number of colleges to which the student
can apply but also on the composition of the portfolio. For example, in Kenya, applicants to sec-
ondary schools are restricted to rank two national schools, two provincial schools, and two district
schools (Lucas and Mbiti, 2012). Similarly, in recent years, applicants in Ghana can rank four schools
including at most one Option 3 school, up to two Option 2 schools, up to four Option 1 schools, and
up to four Option 4 and 5 schools (Ajayi, Friedman, and Lucas, 2020).

The algorithm of Figure 6 can be extended to accommodate such constraints. For example, con-
sider a constraint that no more than m colleges from C1 Ă C can be ranked. Then, Step k of the
algorithm should consider not only each i P C:, but rather each pi, jq P C: ˆ t0, . . . mu (representing
Ann’s score being lower than τi and that she has previously ranked j schools from C1). Using this
approach, the algorithm will terminate within Opmn3q computation steps.

C Additional Results for Stochastically Independent Admissions

In this Appendix, we obtain and collect some new results for stochastically independent admissions,
i.e., the simultaneous search framework modeled by Chade and Smith (2006). These results are either
referenced in the main text or used in our subsequent analysis.

So as to be self-contained, the set of college types C :“ t1, . . . , nu comprises n colleges. Being ac-
cepted by a college of type i generates utility ui, and obtaining her outside option generates utility uo.
If Ann applies to college of type i, then she is admitted by that college with probability αi indepen-
dently of her admissions at any other college. As before, we assume that higher indices yield lower
utility. However, with independent admissions probabilities, and unlike our framework, “replicas”
are valuable for an applicant: if Colleges a and b are replicas, being rejected by College a is no longer
informative about the probability with which one is accepted by College b. As in Chade and Smith
(2006), we allow colleges to have replicas, and denote the replicas of type i college by i1, i2, . . . (we
extendă so that ij ă ij`1 and assume that Ann breaks the indifference in favor of lower index copies).
Similarly, colleges that are less desirable and more selective than another college are not ruled out.30

Finally, to accommodate replicas, we require uniqueness only up to replacing replicas.

30In cases of a tie in utility, we label the dominated college with a higher index.
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C.1 Upward Diversity

Section 5.2 of Chade and Smith (2006) alludes to how the optimal portfolio is upwardly diverse when
each college has replicas, but they establish it only for the case of two college types. Theorem A.1
shows that this conclusion holds generally whenever there are replicas. We prove this result by first
obtaining a preliminary result about risk aversion in a setting in which outside options are stochastic.
In this setting, we show that having access to a higher number of stochastic outside options makes
the applicant more risk-loving.

To be clear about our stochastic outside option setting, let tũju
r
j“1 be independent random vari-

ables taking the value Lj with probability β j and 0 otherwise. Each random variable ũj specifies a
stochastic outside option. We do not assume that all the outside options are available to the appli-
cant: instead, we suppose that the set of available outside options is tũju

r
j“1 (where r P t1, . . . , ru). We

take r as a primitive, and refer to it as the portfolio problem with r stochastic outside options.31 We
contrast this with the baseline framework in which the outside option uo is deterministic.

Lemma 1 documents two facts. First, for each value of r, there exists a payoff-equivalent problem
in which the outside option is deterministic. Second, higher values of r lead to a more risk-loving
assessment in the sense of Definition 4.

Lemma 1. For each portfolio problem with r stochastic outside options, there exists a payoff equivalent portfolio
problem in which the outside option is deterministic; i.e., there exists a utility assessment Vr :“ pvr

0; vr
1, . . . , vr

nq

(with deterministic outside option vr
0) that generates the same expected payoff for each portfolio. Moreover, if

r1 ě r, then Vr1 ěRL Vr.

Proof. We prove the first part by construction. We set the outside option vr
o to be Ermaxjďr ũjs. Denote

by Gr the CDF of maxjďr ũj. We also set the utility of attending college i to be

vr
i “ βrpuiq :“ ui `

ż 8

0
maxtz´ ui, 0udGrpzq.

The term βrpuiq embodies the idea that if accepted by College i, the student has the option either to
attend that school or choose the best realized outside option (denoted by the variable z). She chooses
an outside option only if its realized payoff exceeds ui, and in that case, she accrues the marginal
improvement from the outside option. It follows from integration by parts and some algebra that
βrpuiq “ ui `

ş8

ui
p1 ´ Grpzqqdz. This setup establishes the first part of Lemma 1: a direct calcula-

tion shows that this utility assessment generates the same expected utility for each portfolio as the
portfolio problem with r stochastic options.

We prove the second step by induction, relying on the transitivity of ěRL. Let r1 “ r` 1. Denote

ψ pxq :“

$

&

%

ş8

0

´

1´ Gr1pzq
¯

dz if x ď
ş8

0 1´ Grpzqdz,

x`
ş8

invβrpxq Grpzq ´ Gr1pzqdz otherwise;
,

where we use the fact that the inverse of βrp¨q exists for values greater than
ş8

0 1´Grpzqdz since βrp¨q

31We emphasize that r does not denote the number of outside options that mature.
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is increasing for values greater than
ş8

0 1´ Grpzqdz. We note that

vr1
i “ ψ pvr

i q .

Leibniz’s rule and the Implicit Function Theorem imply that for values of x greater than
ş8

0 1 ´
Grpzqdz, we have

ψ1 pxq “ 1´
Grpinvβr pxqq ´ Gr1pinvβr pxqq

Grpinvβr pxqq
“

Gr1pinvβr pxqq
Grpinvβr pxqq

.

Since the step function Gr1{Gr is non-decreasing from 0 to 1, and since ψ is constant for values of x
lower than

ş8

0 1´ Grpzqdz, this implies that ψ is convex.

Theorem A.1. If each school has m replicas, then for each k ă m, the optimal pk ` 1q-portfolio is more
aggressive than the optimal k-portfolio.

Proof. Since the parameters of the problem are fixed throughout the proof, for each k, we denote the
optimal k-portfolio by Ppkq. We show that the conclusion obtains so long as Pp1qpkq has a replica that
is not included in Ppkq, which is implied by m ą k.

Chade and Smith (2006) show that there is an optimal portfolio of size pk ` 1q, Ppk ` 1q, such
that Ppk ` 1q “ Ppkq Y txu, unless we are in the trivial case that Ppk ` 1q “ Ppkq. Let x denote a
college such that Ppkq Y txu is an optimal pk ` 1q-portfolio. Let y denote a replica of Pp1qpkq that is
not included in Ppkq. Observe that if Ann must choose a portfolio of k colleges that includes the col-
leges in Ppkqz

 

Pp1qpkq
(

, and can choose an additional college in the set
 

x, y, Pp1qpkq
(

, Ppkq remains
optimal.32 This constrained problem is equivalent to the problem of choosing a single-college port-
folio from

 

x, y, Pp1qpkq
(

with a stochastic outside option distributed as the utility from the portfolio
Ppkqz

 

Pp1qpkq
(

. Both a choice of Pp1qpkq and y must be optimal single-college portfolios, because
Pp1qpkq P Ppkq and y is a replica of Pp1qpkq. Therefore, y must also be the optimal single-college portfo-
lio when the set of available schools is only tx, yu and the stochastic outside option is distributed as
the utility from the portfolio Ppkqz

 

Pp1qpkq
(

.
Using the same logic, it follows from txu Y Ppkq being an optimal pk` 1q-portfolio and y R Ppkq

that txu is an optimal single-college portfolio from the menu tx, yu with an outside option that is
distributed as the utility from the portfolio Ppkq. By Lemma 1, Ann is more risk loving with the
(stochastic) outside option from the portfolio Ppkq than with the (stochastic) outside option from the
portfolio Ppkqz

 

Pp1qpkq
(

. It then follows from Theorem 2 and the definition of x that txu ěA tyu, and
so Ppk` 1q ěA Ppkq.33

C.2 The Risk-Loving Effect with Stochastically Independent Admissions

In Section 1, we claim that a result parallel to Theorem 2 holds even if admission decisions are
stochastically independent. An implication of this result is that in Chade and Smith (2006), like
32In other words, an unconstrained optimal portfolio of k colleges must also be an optimal k-portfolio when chosen from a

smaller menu of portfolios that includes it; this property is the Weak Axiom of Revealed Preference or Sen’s α.
33We can invoke Theorem 2 because Ann is choosing a single-college portfolio in both cases and hence the correlation

structure between colleges’ admissions decisions is irrelevant.
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our common-score framework, unequal outside options lead to more aggressive applications and
therefore segregation in the composition of schools.

Theorem A.2. Risk-love leads to a more aggressive portfolio: U1 ěRL U ñ P˚pk, U1, αq ěA P˚pk, U, αq.

Lemma 2. Assume that U “ U1 “ 0 and that U1 ěRL U (i.e., there exists a convex nondecreasing ψ such that
ψp0q “ 0 and u1i “ ψpuiq for each i P C). If the agents U and U1 get access to a stochastic outside option that
gives them utility L ą 0 (respectively ψpLq) with probability α and zero otherwise, then their utility from each
portfolio can be described by the deterministic assessments V and V1 such that V “ V1 “ 0 and V1 ěRL V.

Proof. Direct calculation shows that

vi “

$

&

%

ui ´ αL if ui ą L

p1´ αq uipxq else,

and

v1i “

$

&

%

u1i ´ αψpLq if u1i ą ψpLq

p1´ αq u1ipxq else

are profiles as required by the statement. To see that V1 ěRL V observe that the function

βpxq “

$

&

%

p1´ αqψp x
1´α q if z ď p1´ αqL

ψpx` αLq ´ αψpLq else

maps V to V1 (in particualr, βp0q “ 0). Since C is finite, we can assume without loss of generality that
ψ is smooth. With this assumption, it is straightforward to verify that β is nondecreasing and convex
(it is differentialble—including at p1´ αqL—with a nonegative increasing derivative).

Proof of Theorem A.2. The proof proceeds by induction on k. The case of k “ 1 follows from Theo-
rem 2 (correlation between admissions decisions does not matter in choosing a single-college port-
folio). For k ą 1, if for some i, j ď k we have P˚piqpk, U1, αq “ P˚pjqpk, U, αq, we are done by the
inductive hypothesis and Lemma 2 (the rest of each portfolio is the optimal size k´ 1 portfolio from
Cz

 

P˚piqpk, U1, αq
(

with the stochastic outside option of P˚piqpk, U1, αq “ P˚pjqpk, U, αq). Otherwise,
P˚pkqpk, U1, αq ‰ P˚pkqpk, U, αq.

Assume that P˚pkqpk, U1, αq ă P˚pkqpk, U, αq (i.e., the lowest ranked choice of the more risk loving
agent is more aggressive). In that case, P˚pkqpk, U, αq is available to U as a last (k-th) choice, which
implies that

αP˚pkqpk,U,αqu
1

P˚pkqpk,U,αq ď αP˚pkqpk,U1,αqu
1

P˚pkqpk,U1,αq.

Imagine constraining U1 to include P˚pkqpk, U, αq as the last choice in her portfolio. In that case, by
the inductive hypothesis and Lemma 2, she would choose a portfolio of k ´ 1 colleges that is more
aggressive than rP˚pk, U, αqsk´1 (i.e., the first k´ 1 choices on P˚pk, U, αq). Next, observe that since U1

prefers the “outside option” offered by her last choice P˚pkqpk, U1, αq to P˚pkqpk, U, αq she only becomes
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more aggressive in her choosing the optimal k´ 1 colleges to add to this college.34

Finally, assume toward contradiction that P˚pkqpk, U1, αq ą P˚pkqpk, U, αq. Since P˚pk, U1, αq and
P˚pk, U, αq are disjoint, P˚pkqpk, U1, αq is available to U as a last choice and P˚pkqpk, U, αq is available
to U1 as a last choice. Since rejections convey no information this means that the optimal portoflio
of size 1 from the menu

 

P˚pkqpk, U1, αq, P˚pkqpk, U, αq
(

is P˚pkqpk, U1, αq for U1 and P˚pkqpk, U, αq for U,
contradicting the base case (and Theorem 2).

C.3 Algorithm for Solving for the Optimal Portfolio

Here, we adapt the algorithm of Section 4.4 to find the optimal portfolio for the Chade and Smith
setting. The key idea is that we build the optimal portfolio top-down, starting with Ann’s first choice.

Let P˚pk, U, α, cq denote the optimal portfolio with utility assessment U and admission probabil-
ities α, where Ann is restricted to apply to colleges in tx P C | x ą cu. Since rejections from colleges
in tx P C | x ď cu convey no information about admissions at colleges tx P C | x ą cu, P˚pk, U, α, cq is
the optimal continuation of size k for any “history” where College c is the least aggressive choice that
has rejected Ann. We therefore have

V pP˚pk, U, α, iqq :“ max
jPC s.t. tiuąAtju

 

αjuj ` p1´ αjqV pP˚pk´ 1, U, α, jqq
(

. (24)

Using this dynamic program, one can run a routine analogous to Figure 6: we find the optimal
continuation where one has to find colleges less aggressive than the least aggressive college that
has rejected one thus far. The algorithm continues to be computationally efficient, since only n `
1 histories must be considered at any step, just as in our baseline framework. The routine from
Appendix B also remains valid, and so the algorithm can be sped up to n2 log n steps.

If application costs, φp¨q, depend only on the number of colleges, our algorithm requires more
computation steps than the Marginal Improvement Algorithm of Chade and Smith (2006). However,
as we discuss in Appendix B.2, our approach can expand the scope of their analysis by accommodat-
ing tier constraints, unlike that algorithm.

D Examples and Proofs for Section 5.2

D.1 Proof of Theorem 6 on p. 19

Lemma 3. The number of replicas of College 1 on the optimal k-portfolio approaches infinity as k increases to
infinity.

Proof. Since the parameters of the problem are fixed throughout the proof, for each k, we denote the
optimal k-portfolio by Ppkq.

Toward contradiction, suppose that lim inf |tx P Ppkq | x is a replica of College 1u| “ m ă 8. Then,
there exists an increasing sequence of portfolio sizes such that the number of replicas of College 1 on
the optimal portfolio is at most m. By the pigeonhole principle, for this sequence, there exists i ą 1
such that lim sup |tx P Ppkq | x is a replica of College iu| “ 8. Let l ą 1 be the lowest such index.
34This follows since the corresponding profiles V from Lemma 2 are ěRL-ranked.
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Consider a subsequence of portfolio sizes such that the number of replicas of College l increases to
infinity and the composition of higher ranked colleges is constant (this is possible as, by construction,
the number of such colleges on the optimal portfolio is uniformly bounded across all portfolio sizes in
the sequence). For sufficiently large portfolio, admission to a replica of College l is nearly guaranteed
(even when conditioning on rejection from all better schools).35

By contrast, rejection from all applications to Colleges 1, . . . , pl´ 1q occurs with probability greater
than K ą 0 (which does not depend on the size of the portfolio, since we selected portfolios with the
same composition of applications to these colleges). Additionally, the probability of admission to
College 1 conditional on rejections from all replicas of Colleges 1, . . . , pl ´ 1q is bounded below by
∆ ą 0 (which does not depend on the size of the portfolio).36 This is a contradiction, because the
implication is that for sufficiently large portfolio sizes, Ann strictly prefers to replace a replica of
College l with a replica of College 1 (contradicting the optimality of Ppkq).

Proof of Theorem 6. By Lemma 3 there exists k such that a replica of College 1 appears on the optimal
k-portfolio, Ppkq. By Theorem A.1, for any k1 ą k the Ppk1q consists of the same colleges as Ppk1q in
addition to k1 ´ k replicas of College 1.

D.2 Proof of Theorem 7 on p. 20

Proof. That the number of copies of College 1 approaches infinity as the size of the portfolio increases
follows from Lemma 3. We now prove that the number of copies of College m also approaches
infinity as the size of the portfolio increases. The case m “ 1 is degenerate, so we henceforth assume
that m ‰ 1. To simplify notation, we denote by the CDF of the common component, ρs, by G, and its
PDF by g, and similarly, the CDF of schools specific component,

a

1´ ρ2εc by F and the PDF by f .
We also normalize the outside option to zero throughout this proof (without loss of generality).

Given an increasing sequence of portfolio sizes, Let l ă m denote the largest index such that
lim sup |tx P P˚pkq | x is a replica of College lu| “ 8 (where we suppress the dependence of l on the
sequence). Toward contradiction, assume that there exists an increasing sequence of portfolio sizes
such that l ‰ m. Then, there is no loss in assuming that each portfolio in the sequence include
an application to a copy of College l. Additionally, the number of copies of colleges l ` 1, . . . , m is
uniformly bounded by some B ă 8.

For a given portfolio size k, let k1, k2, . . . kl´1 denote the number applications to copies of Col-
leges 1, 2, . . . , pl ´ 1q, respectively. Furthermore, denote by kl the number of applications to copies
of College l minus 1 (i.e., excluding the marginal application to college l). In what follows, we will
show that, for sufficiently large portfolios, replacing the kl ` 1-st application to College l with an
application to College pl ` 1q will be strictly beneficial to Ann (contradicting the optimality of the
portfolios).

35E.g., find a s˚ low enough that Prts ą s˚ | rejections from Colleges 1, . . . , pl´ 1qu is above?q and a large enough number
of applications to College l that conditional on s˚ admissions occurs with probability ?q (and thus conditional on any
s ą s˚ admission occurs at least with probability?q).

36To see this, note that there is a positive probability that the common component of Ann’s score ρs P rτl , τl ` 1s but, for all

of the independent draws for replicas of Colleges 1, . . . , pl´ 1q are such that
´

a

1´ ρ2
¯

εc ă ´1.
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We proceed by conducting a cost-benefit analysis for replacing the kl ` 1-st application to Col-
lege l with an application to College pl ` 1q. The benefit from the kl ` 1-st application to College l is
bounded above by

ż 8

´8

gpzqFk1pτ1 ´ zq ˆ ¨ ¨ ¨ ˆ Fklpτl ´ zq p1´ Fpτl ´ zqq uldz.

This expression is an upper bound on the loss from forgoing the marginal application to a copy of
College l. It uses the fact that the marginal application to College l is only beneficial if Ann is rejected
by all other weakly preferred colleges, and ignores the fact that if Ann is rejected by all these colleges,
she may still get into some college she likes more than the outside option.

The marginal benefit from an application to school l ` 1 is bounded below by

ż 8

´8

gpzqFk1pτ1 ´ zq ˆ ¨ ¨ ¨ ˆ Fklpτl ´ zq p1´ Fpτl`1 ´ zqq ul`1FBpτm ´ zqdz

In this expression, we assumed a “worst case” where Ann only benefits from the application to Col-
lege l ` 1 if she is rejected by all other colleges she likes weakly less (taking the maximal number of
such applications, B, and assuming they are all to the least selective rationalizable college, m).

Denote F̂kpzq :“ pFk1pτ1 ´ zq ˆ ¨ ¨ ¨ ˆ Fklpτl ´ zqq1{
ř

ki . A change of variables (x “ F̂kpzq) yields the
upper bound

ż 1

0
gpF̂´1

k pxqqxk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
1

F̂1k
´

F̂´1
k pxq

¯dx (25)

and the lower bound

ż 1

0
gpF̂´1

k pxqqxk
´

1´ Fpτl`1 ´ F̂´1
k pxqq

¯

ul`1FBpτm ´ F̂´1
k pxqq

1

F̂1k
´

F̂´1
k pxq

¯dx. (26)

We will complete the proof by showing that the ratio between the marginal benefit and the
marginal cost approaches infinity as portfolio sizes increase. The proof proceeds in several steps.

Step 0. Since F is strictly increasing, by the definition of F̂k we have that F̂k is strictly increasing
(thus invertable) and

τl ´ F´1pxq ď F̂´1
k pxq ď τ1 ´ F´1pxq.

Step 1. By Step 0, as x approaches 1 we have that F̂´1
k pxq approaches ´8. Hence, the positive

expressions 1´ Fpτl`1´ F̂´1
k pxqq and 1´ Fpτl´ F̂´1

k pxqq both approach 0 as x approaches 1. Therefore,
for any M ą 0, there exists 0 ă εM ă 1{4 such that in the interval p1´ εM, 1qwe have

1´ Fpτl`1 ´ F̂´1
k pxqq “ 1´ F

´

pτl`1 ´ τlq ` τl ´ F̂´1
k pxq

¯

ą M
´

1´ Fpτl ´ F̂´1
k pxqq

¯

.37

37To see this, write ∆ “ τl ´ τl`1 ą 0 and z “ τl ´ F̂´1
k pxq, and observe that 1´ Fpz´ ∆q{1´ Fpzq approaches infinity as z

approaches infinity.
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Furthermore, using Step 0 and the monotonicity of F, we get that for any x ě 1´ εM

FBpτm ´ τ1 ` F´1p1´ εMqq ď FBpτm ´ F̂´1
k pxqq.

Since
ż 1

1´εM

gpF̂´1
k pxqqxk

´

1´ Fpτl`1 ´ F̂´1
k pxqq

¯

ul`1FBpτm ´ F̂´1
k pxqq

1

F̂1k
´

F̂´1
k pxq

¯dx

is clearly a lower bound on Equation (26), the above inequalities allow us to provide a relaxed lower
bound on the benefit of including a copy of College (l+1):

ż 1

1´εM

gpF̂´1
k pxqqxk M

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul`1FBpτm ´ τ1 ` F´1p1´ εMqq
1

F̂1k
´

F̂´1
k pxq

¯dx. (27)

Step 2. We now derive a relaxed upper bound on the marginal benefit from an application to a
copy of College l. Intuitively, we will show that in large portfolios (after many rejections from other
colleges that are weakly more desirable), Ann’s beliefs are concentrated on pessimistic values.

First, consider the integral from Equation (25) restricted to low beliefs (x ě 1{2). We have

ż 1

1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ą
3
4

k ż 1

3
4

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx

where we have used the fact that the integrand is positive everywhere. Additionally, by Step 0 we
have

3
4

k ż 1

3
4

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ą
3
4

k ż 1

3
4

´

1´ FpF´1pxqq
¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx.

Similarly, focusing on high beliefs, we get

ż 1
2

0
xk

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ă
1
2

k ż 1
2

0

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx

and by Step 0

1
2

k ż 1
2

0

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ă
1
2

k ż 1
2

0

´

1´ Fpτl ´ τ1 ` F´1pxqq
¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx.

Altogether we get

ş1
1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq
F̂1kpF̂

´1
k pxqq

dx

ş

1
2
0 xk

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq
F̂1kpF̂

´1
k pxqq

dx
ą
p3{4qk

p1{2qk

ş1
3
4

`

1´ FpF´1pxqq
˘

ul
gpF̂´1

k pxqq
F̂1kpF̂

´1
k pxqq

dx

ş

1
2
0 p1´ Fpτl ´ τ1 ` F´1pxqqq ul

gpF̂´1
k pxqq

F̂1kpF̂
´1
k pxqq

dx
.
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Since the right hand side approaches infinity as k grows to infinity,38 we get that for sufficiently
large k

2
ż 1

1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ą
ż 1

0
xk

´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx.

Step 3. We now further relax the upper bound from Step 2. The intuition, again, is that beliefs on
the common component are concentrated on lowest values (this time, 1´ εM ă x).

ż 1

1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx “

ż 1´εM

1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx`
ż 1

1´εM

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx.

The expression gpF̂´1
k pxqq

F̂1kpF̂
´1
k pxqq

is uniformly bounded above by some L ą 0 in the domain r1
2 , 1´ εMs.39

Thus,

ż 1´εM

1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ď Lul

ż 1´εM

1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

dx ď
p1´ εMq

k`1

k` 1
Lul .

Similarly, the expression
´

1´ Fpτl ´ F̂´1
k pxqq

¯

gpF̂´1
k pxqq

F̂1kpF̂
´1
k pxqq

is uniformly bounded below by some ∆ ą

0 in the domain r1´ εM, 1´ εM{2s. Thus,

ż 1

1´εM

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ą
ż 1´ 1

2 εM

1´εM

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx

ą
εM∆ul

2
p1´ εMq

k.

Altogether we get that for sufficiently large values of k

ż 1

1
2

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx ă 2
ż 1

1´εM

xk
´

1´ Fpτl ´ F̂´1
k pxqq

¯

ul
gpF̂´1

k pxqq

F̂1k
´

F̂´1
k pxq

¯dx.

(28)

38The right hand side grows to infinity since p 3
4 {

1
2 q

k approaches infinity, while the ratio of integrals is bounded below by
a positive number. To see this, note that the integrals depend on k only through the vector pk1{k, k2{k, . . . , kl{kq, and the
values of these integrals are continuous in this vector. Thus, they attain a minimum and a maximum in the l-simplex
(both must be positive, since the integrand is positive). (An alternative approach is to take a subsequence of portfolios
such that pk1{k, k2{k, . . . , kl{kq converge.)

39See Footnote 38.
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Step 4. To complete the proof we show that the ratio between the relaxed lower bound of Equa-
tion (27) and the relaxed upper bound of Equation (28) is greater than 1, establishing that for suffi-
ciently large portfolios on the sequence replacing the marginal application to a copy of College l with
an application to a copy of College pl ` 1qwould be beneficial (a contradiction).

The ratio is equal to Mul`1FBpτm´τ1`F´1p1´εMqq

4ul
. For a sufficiently large choice of M , this expression

is arbitrarily large (all terms in the numerator are weakly increasing in M) and, in particular, it is
greater than 1.

D.3 Effect of Increasing Weight on Common Component

This subsection analyzes the effect of increasing the weight on the common component, ρ, on two-
college portfolios. We begin with an example that illustrates how moving from ρ “ 0 to ρ “ 1, the
optimal portfolio becomes strictly less aggressive.

Example A.1. Let C “ t1, 2, 3, 4u, u1 “ 1.0099, u2 “ 1, u3 “ 0.5, and u4 “ 0.2, and admission
thresholds implicitly defined by Φpτ1q “ 65{81, Φpτ2q “ 0.8, Φpτ3q “ 0.5, and Φpτ4q “ 0.01. When
ρ “ 1, the optimal 2-college portfolio is t2, 4u. By contrast, when ρ “ 0, the optimal 2-college portfolio
is t1, 3u.

The example below shows that the opposite effect can also arise: moving from ρ “ 0 to ρ “ 1
leads to a more aggressive portfolio.

Example A.2. Let C “ t1, 2, 3u, u1 “ 1, u2 “ 0.5, and u3 “ 0.48, and admission thresholds implicitly
defined by Φpτ1q “ 0.99, Φpτ2q “ 0.5, Φpτ3q “ 0.49. When ρ “ 1 the optimal 2-college portfolio is
t1, 2u. By contrast, when ρ “ 0, the optimal 2-college portfolio is t2, 3u.

We now provide a proof of Theorem 8. We denote by Φ (resp., φ) the CDF (resp., PDF) of the
standard (univariate) normal distribution and by Φ2p¨, ¨, ρq (resp., φ2p¨, ¨, ρq) the CDF (resp., PDF) of
the standard bivariate normal distribution with correlation ρ. The proof uses two lemmas.

Lemma 4. For any ∆ ą 0, Rpxq :“ 1´Φpxq
1´Φpx`∆q is increasing.

Proof. Observe that

R1pxq “
´φpxq p1´Φpx` ∆qq ` φpx` ∆q p1´Φpxqq

p1´Φpx` ∆qq2
“

1´Φpxq
1´Φpx` ∆q

¨

ˆ

φpx` ∆q
1´Φpx` ∆q

´
φpxq

1´Φpxq

˙

The first term of the product is the ratio of (nonzero) probabilities, and the term in parenthesis is the
difference between two inverse Mills ratios, which are known to be increasing.

Lemma 5. For any i ă j ă k, the ratio Prtaccepted at k, rejected at iu
Prtaccepted at j, rejected at iu increases with ρ.

Proof. Let B :“ Φ2pτi,8, ρq “ Φpτiq, the probability of rejection from school i (which is constant
across all correlation levels), gpρq :“ Φ2pτi, τj, ρq, and f pρq :“ Φ2pτi, τk, ρq, the probabilities of being
rejected from both i and j (resp. i and k). With this notation, our goal is to show that Hpρq :“
pB´ f pρqq{pB´ gpρqq is increasing. We will show that 9H ą 0.40

40For consistency with the literature, we represent the derivative with respect to ρ as a dot.
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To begin with, note that 9H :“sgn 9gpB´ f q ´ 9f pB´ gq, and so

9H ą 0 ðñ
pB´ f q
pB´ gq

ą
9f
9g

.

It is well known that conditional of si “ x the marginal distributions of sj and of sk are governed
by the CDF Φp y´ρx?

1´ρ2
q. Hence, by Fubini’s theorem,

pB´ f q
pB´ gq

“

şτi
´8

ˆ

1´Φ
ˆ

τk´ρx?
1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx

Lemma 4 implies that, on the domainp´8, τis, the ratio 1´Φ
ˆ

τk´ρx?
1´ρ2

˙

{1´Φ
ˆ

τj´ρx
?

1´ρ2

˙

is mini-

mized at x “ τi (since τj ą τk and ρ ě 0). Denote the minimal value by λ. We have

şτi
´8

ˆ

1´Φ
ˆ

τk´ρx?
1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
ą

şτi
´8

λ

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
“ λ.

Next, note that

1´Φ
ˆ

τk´ρτi?
1´ρ2

˙

1´Φ
ˆ

τj´ρτi?
1´ρ2

˙ ě

φ

ˆ

τk´ρτi?
1´ρ2

˙

φ

ˆ

τj´ρτi?
1´ρ2

˙ “
φ2pτi, τk, ρq

φ2pτi, τj, ρq

where the inequality uses again the monotonicity of the inverse Mill’s ratio.
Finally, Plackett (1954) shows that

9φ2px, y, ρq “
B2φ2px, y, ρq

BxBy

which implies that 9g “ φ2pτi, τj, ρq and 9f “ φ2pτi, τk, ρq.
Altogether, we get:

B´ f
B´ g

ě

şτi
´8

ˆ

1´Φ
ˆ

τk´ρx?
1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
ą λ “

1´Φ
ˆ

τk´ρτi?
1´ρ2

˙

1´Φ
ˆ

τj´ρτi?
1´ρ2

˙ ě
φ2pτi, τk, ρq

φ2pτi, τj, ρq
“

9f
9g

as required.

Proof of Theorem 8. Fixing the rest of the parameters of the problem, let Ppρq denote the optimal size-2
portfolio under correlation ρ. Toward contradiction, assume that ρ1 ą ρ but Ppρ1q :“ ti1, j1u is less
dispersed than Ppρq :“ ti, ju, i.e., i ă i1 ă j1 ă j. Since Ppρq is optimal under ρ, j “ Pp2qpρq must be

45



optimal conditional on being rejected from i under the correlation ρ. Hence

Φpτiq ´Φ2pτi, τj, ρq

Φpτiq ´Φ2pτi, τj1 , ρq
ě

uj1

uj
.

Similarly, since Ppρ1q is optimal under ρ1,

Φpτi1q ´Φ2pτi1 , τj, ρ1q

Φpτi1q ´Φ2pτi1 , τj1 , ρ1q
ď

uj1

uj
.

By Lemma 5,

Φpτiq ´Φ2pτi, τj, ρq

Φpτiq ´Φ2pτi, τj1 , ρq
ă

Φpτiq ´Φ2pτi, τj, ρ1q

Φpτiq ´Φ2pτi, τj1 , ρ1q
.

Thus, to get a contradiction, it suffices to show that

Φpτiq ´Φ2pτi, τj, ρ1q

Φpτiq ´Φ2pτi, τj1 , ρ1q
ď

Φpτi1q ´Φ2pτi1 , τj, ρ1q

Φpτi1q ´Φ2pτi1 , τj1 , ρ1q
.

Let κpτq :“ Φpτq´Φ2pτ,τj,ρ1q
Φpτq´Φ2pτ,τj1 ,ρ1q

. We will show that κ1pτq ă 0 for any τ ą τj1 (i.e., that the bad news
effect from being rejected from the first school is stronger the less selective it is).

By Fubini’s theorem,

κpτq “

şτ
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx

şτ
´8

ˆ

1´Φ
ˆ

τj1´ρx
?

1´ρ2

˙˙

φpxqdx

So κ1pτq has the same sign as

˜

1´Φ

˜

τj ´ ρτ
a

1´ ρ2

¸¸

φpτq

ż τ

´8

˜

1´Φ

˜

τj1 ´ ρx
a

1´ ρ2

¸¸

φpxqdx´

˜

1´Φ

˜

τj1 ´ ρτ
a

1´ ρ2

¸¸

φpτq

ż τ

´8

˜

1´Φ

˜

τj ´ ρx
a

1´ ρ2

¸¸

φpxqdx

Which has the same sign as

şτ
´8

ˆ

1´Φ
ˆ

τj1´ρx
?

1´ρ2

˙˙

φpxqdx

şτ
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
´

ˆ

1´Φ
ˆ

τj1´ρτ
?

1´ρ2

˙˙

φpτq
ˆ

1´Φ
ˆ

τj´ρτ
?

1´ρ2

˙˙

φpτq

By Lemma 4 the first term is bounded below by the value of the integrands at τ (we called this
quantity λ in the proof of Lemma 5), which is exactly equal to the second term (with opposite sign).
This establishes that κ1pτq ą 0 as required.
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E Examples and Proofs for Section 5.3

Proof of Theorem 9 on p. 21. First, we show that the utility from the optimal p2k ´ 1q-portfolio is an
upper bound for that achieved by the optimal k-strategy. Any k-strategy details one project to attempt
first (corresponding to the “start here” label in Figure 7), two projects to attempt next (in case of
success and failure), and generally 2j projects in the j-th step. Thus, any strategy can attempt at most
2k ´ 1 projects. Since the optimal p2k ´ 1q-portfolio chooses the best such set of projects, it guarantees
at least as much utility.41

We next show that in our setting, there exists a k-strategy that attains this upper bound (and
is therefore optimal). Ann first attempts the median project in the optimal p2k ´ 1q-portfolio. If it
succeeds, she does not gain from attempting any lower-ranked projects; similarly, if it fails, she has
no reason to attempt any higher-ranked project. Based on this observation, Ann attempts the median
project among the top 2k´1 ´ 1 projects of the optimal p2k ´ 1q-portfolio if her first attempt succeeds
(the first blue arrow in Figure 7) and the median project among the bottom 2k´1 ´ 1 projects if her
first attempt fails (the first red arrow in Figure 7). Generally, in each Step j she attempts the median
project among the remaining 2k´j`1´ 1 relevant projects. In this way she is guaranteed to choose the
same project as if she attempted all projects in the optimal p2k ´ 1q-portfolio simultaneously.

Example A.3. Let C “ t1, 2, 3u and assume that s is distributed uniformly on r0, 1s, with τ1 “ 0.9,
τ2 “ 0.5, and τ3 “ 0. Furthermore, let u1 “ 1.1, u2 “ 0.5, and u3 “ 0.1. We assume a constant
marginal cost of application, i.e., φpxq :“ cx for some c ą 0. We will consider two specific values of c:
c1 “ 0.051 and c2 “ 0.01.

We begin by considering Ann’s dynamic search strategy. First, we observe that Project 2 is so
attractive that she will not stop searching without trying Project 2 unless she is successful with
Project 1. There are other strategies that can be easily ruled out. For example, strategies where
Ann tries Project 3 and, if successful, then tries Project 1. Ann can save search costs by first trying
Project 1, and only trying Project 3 in case of failure.

The values of c we consider are low enough that Ann is willing to try Project 1 even after success
in Project 2, and is willing to try Project 3 even after failure in Project 2. This leaves us with two
reasonable strategies: Top to Bottom (first try Project 1, Project 2 if failure, Project 3 if that too fails),
or Middle Out (first try Project 2, Project 1 if success, Project 3 if failure). The expected cost from Top
to Bottom is c ˆ p1` 0.9` 0.5q “ 2.4c. The cost for Middle Out is 2c; either way Ann attempts two
projects. Hence, this latter strategy is optimal.

Let us now compare the static portfolio to the dynamic strategy. For c “ 0.051, the optimal static
portfolio is t1, 2u. This is weakly (and sometime strictly) more aggressive than the set of colleges
searched by Ann (either t1, 2u or t2, 3u). For c “ 0.01 the optimal static portfolio includes all three
colleges but Ann only searches two in the dynamic setup.

These results contrast with the independent setting. In that setting, Chade and Smith (2006) show
that agents stop searching after the first success. Moreover, if attempts do not succeed, the agent
searches more than they would in the simultaneous problem and goes for more aggressive choices.

41We note that this upper bound is independent of the correlation in project outcomes.
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