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1 Introduction

In many decision-making environments, agents base their actions on a simple objective index, a single
number that summarizes the available information about objects of choice and does not depend on
agents’ particular preferences. Agents might choose to do this because they are having difficulty
attaining and interpreting information or because they have an overabundance of useful information.
For example, the Sharpe ratio—the ratio between the expected net return and its standard deviation—
is frequently used as a performance measure for portfolios (Sharpe, 1966; Welch, 2008).

This paper proposes an axiomatic approach to deriving an index that is objective but nevertheless
suitable as a guide for decision-making for decision makers with different preferences. The approach
is developed in a general decision-making environment where an agent chooses whether to accept or
reject a transaction (a gamble, a cashflow, etc.). It requires that the index (e.g., of riskiness or of delay)
satisfy two properties.

The first property, local consistency, roughly requires that agents can optimally decide on each
“small” transaction based on a threshold value of the index without knowing any other details about
the transaction. Theorem 2 in Section 4 shows that such a cutoff must be monotonic in “local prefer-
ences” (e.g., absolute risk aversion Pratt, 1964). Even though in applications transactions are complex
and multidimensional, this property is satisfied by many indices. However, some of the indices that
satisfy this desirable property also have normatively undesirable properties. For example, the Sharpe
ratio has such a property: it is not monotonic with respect to first-order stochastic dominance (outside
of the domain of normal distributions).1

The second property required of the index links the value of the index on large transactions to its
value on small transactions. For an index to satisfy this property, an agent whose threshold for ac-
cepting small transactions is always lower (higher) than a particular value of the index must likewise
accept (reject) large transactions whose value is lower (higher) than this value. Section 5 provides
the formal statement, which is inspired by Samuelson (1963), as well as a discussion of the norma-
tive appeal of this property. It then presents Theorem 3, which establishes that the two properties
characterize a unique index for the respective decision problem (up to continuous monotonic trans-
formations).2

Throughout the paper, I illustrate the usefulness of the results in two distinct domains: the risk-
iness of additive gambles (as studied by Aumann and Serrano, 2008), where I derive the Aumann–
Serrano index of riskiness, and the delay of investment cashflows, where I derive the inverse internal
rate of return (IRR) index of delay. To the best of my knowledge, no other paper in this stream of the
literature has considered indices for this domain.

The appendix includes many other applications. For portfolio allocation problems, I derive the
generalized Sharpe ratio (Hodges, 1998; Hellman and Schreiber, 2018). For information transactions,
I derive the normalized value of information (Cabrales et al., 2017). I also derive indices of riskiness

1In the context of risk, Heller and Schreiber (2020) identify a similar requirement as “a necessary condition for a plausible risk
index” and they “leave for future research the interesting question of how to choose among the various risk indices that satisfy this
necessary condition.” This paper responds to this challenge.

2To be precise, two additional mild conditions are required as well.
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for multiplicative gambles (Schreiber, 2013) and menus of gambles (similar to an index proposed by
Michaeli, 2014). Because the results are proved in a general, abstract model, they can be applied in a
variety of other domains of interest.

Relation to the literature. This paper contributes to the literature on objective indices for specific
decision problems, which dates back at least to Fisher (1930). It is most closely related to the pioneer-
ing work of Aumann and Serrano (2008) and the large body of literature that followed. Aumann and
Serrano (2008) use a decision-theoretic, axiomatic approach to derive an index of riskiness for addi-
tive gambles.3 The key axiom in Aumann and Serrano (2008) is the “duality” axiom. They explain:

The concept is based on that of risk aversion: We think of riskiness as a kind

of “dual” to risk aversion—specifically, as that aspect of a gamble to which

a risk-averter is averse. So on the whole, we expect individuals who are less

risk averse to take riskier gambles. As Machina and Rothschild (2008, 7:193)

put it, “risk is what risk-averters hate.”

There is a large literature applying duality-type axioms to other decision-making environments.
Schreiber (2013) develops an index of relative riskiness for multiplicative gambles. Cabrales et al.
(2017) study the value of information for investors.4 Hellman and Schreiber (2018) study a standard
portfolio allocation problem. Michaeli (2014) studies sets of additive gambles, focusing on ambiguity-
averse decision makers.

The first step of my analysis is introducing a unifying framework that nests the abovementioned
applications as well as many others. Theorem 1 in Section 3 shows that three properties characterize
a unique index for the respective application (up to continuous monotonic transformations). These
properties, which include a “weak duality” requirement and mild continuity and monotonicity re-
quirements, are typically implied by axioms that have been used for domain-specific duality-type
characterizations.

Duality-type axioms have a displeasing feature: they rely on interpersonal comparisons. For
example, Aumann and Serrano’s duality axiom requires “individuals who are less risk averse to take
riskier gambles.” My approach is not subject to this critique. However, Theorem 3 shows that the two
properties that I require the index to satisfy imply the “weak duality” requirement from Theorem 1.

The idea that small decisions can be made based exclusively on the index has appeared in Schreiber
(2016), who studies a continuous-time setup and restricts attention to short-term investments. Like
this paper, Schreiber (2016) shows that many indices of riskiness have this property. Heller and
Schreiber (2020) generalize this results to other decision-making environments. Neither paper pro-
vides guidance on how to choose from these indices. The present paper addresses this challenge by
linking the value of the index on small transactions to its value on large transactions. A large body of

3Foster and Hart (2009) present a different index of riskiness with an operational interpretation. Hart (2011) demonstrates
that both indices arise from a comparison of acceptance and rejection of gambles (see also Schreiber, 2015), and Foster
and Hart (2013) develop alternative axiomatizations for both indices. Homm and Pigorsch (2012b) provide an operational
interpretation of the Aumann–Serrano index of riskiness.

4See also Cabrales et al. (2013) and Shorrer (2018).
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literature dating back at least to Samuelson (1963) and Pratt (1964) studies the connections between
decisions on small and large transactions.

Though the literature on indices focuses on complete orders, a large body of work focuses on
partial orders over which all “reasonable” agents agree. Notable examples include first- and second-
order stochastic dominance (Hanoch and Levy, 1969; Hadar and Russell, 1969; Rothschild and Stiglitz,
1970) in the context of gambles, Blackwell’s (1953) order over information structures, stochastic dom-
inance in the presence of a risk-free asset (Levy and Kroll, 1978) in the context of portfolio allocation,
and time dominance (Bøhren and Hansen, 1980; Ekern, 1981) in the context of cashflows. In each of
the applications I present, the index I derive is monotonic in the corresponding partial order. As I
explain in Section 6, this is not a coincidence but rather a feature that future applications will also
possess.

Apart from serving as input in decision-making, indices are used to limit the discretion of agents
by regulars (Artzner, 1999) or those who delegate (Turvey, 1963). For example, a mutual fund man-
ager may be required to invest in bonds that are rated AAA. Indices are also used in empirical and
theoretical studies to summarize complex, multidimensional attributes (e.g., Echenique and Fryer,
2007). My approach can potentially be used to derive indices in some of these settings.

2 Framework

A decision-making environment consists of a set of decision problems in which a decision maker is offered
a transaction that she can either accept or reject.

Transactions. A transaction is a pair pµ, xq where µ P R`` and x belongs to an abstract space X. In
applications, µ is often interpreted as a payment that the agent makes (receives) in order to obtain x.
The set of all possible transactions, T, is a subset of R`` ˆ X.

Decision makers. The set of decision-maker types, DM, is parameterized by a continuous function
C : R Ñ R`` and a status quo w P R. In applications, the function may describe a utility function
while the status quo may capture the agent’s current wealth level. I sometimes refer to p f p¨q, wq as a
decision maker f p¨q with status quo w. I assume that if p f p¨q, wq P DM, then p f p¨q, w1q P DM for any
status quo w1.

Fixed decision types. The set DM includes the decision makers labeled by f p¨q ” c for all c P R``

(at every status quo). The decisions of these agents do not depend on the status quo. Formally, for
any transaction pµ, xq P T, any c ą 0, and any w, w1 P R, the decision maker f p¨q ” c with status quo
w accepts pµ, xq P T if and only if the decision maker f p¨q ” c with status quo w1 accepts pµ, xq. I refer
to these agents as fixed decision types.

Monotonicity in types. For each status quo, decision makers’ acceptance and rejection decisions
are monotonic in their types (using the partial order that compares functions pointwise). Formally,
for any pµ, xq P T and w P R, for any pair of decision makers p f p¨q, wq and php¨q, wq, if f p¨q ě hp¨q and
p f p¨q, wq accepts pµ, xq, then so does php¨q, wq.
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Monotonicity in µ. For any pµ1, xq P T, for any decision maker, there exists µ˚ P R`` such that the
transaction pµ1, xq P T is accepted if and only if µ1 ą µ˚.5

Richness of preferences. For any pµ, xq P T, there exists c˚ pµ, xq P R`` such that f p¨q ” c with
status quo w rejects pµ, xq if and only if c ě c˚ pµ, xq.6 Furthermore, if µ1 ą µ, then c˚ pµ1, xq ą c˚ pµ, xq.

Richness of transactions. For any pµ, xq P T, there exists ε ą 0 such that if |µ1 ´ µ| ă ε, then
pµ1, xq P T. Furthermore, for any c P R``, there exists µ1 such that pµ1, xq P T and c˚ pµ1, xq “ c.

2.1 An Illustration via the Additive Gambles Setting

This section shows that the canonical setting of additive gambles (Aumann and Serrano, 2008; Foster
and Hart, 2009, 2013; Hart, 2011) is a special case of the framework. Subsequent sections consider
several other important settings.

Agents’ preferences are summarized by a von Neumann–Morgenstern utility function for money
and a status quo wealth. Utility functions are strictly increasing, strictly concave, and twice contin-
uously differentiable. The transactions under consideration are gambles. A gamble g is a finite-
valued real random variable with positive expectation and some negative values (i.e., Ergs ą 0 and
Pr tg ă 0u ą 0). The collection of all gambles is denoted by G. A gamble g P G is accepted by u at
wealth w if E rupw ` gqs ą upwq and is rejected otherwise.

For any gamble g P G, Lpgq and Mpgq, respectively, denote the maximal loss and gain from
the gamble that occur with positive probability. Formally, Lpgq :“ max suppp´gq and Mpgq :“
max supppgq. Additionally, the Arrow–Pratt coefficient of absolute risk aversion (ARA), ρ, of u at wealth
w is denoted by

ρupwq :“ ´
u2pwq

u1pwq
.

The additive gambles setting is a special case of the general model.

Transactions. Let X be the set of zero-mean, non-degenerate, finite-valued random variables and
T “ tpµ, xq P R`` ˆ X | µ ` x P Gu. Then the mapping taking g to pErgs, g ´ Ergsq is a bijection
between G and T.

Decision makers. The behavior of an agent with utility u and wealth w is fully pinned down by
ρup¨q and status quo wealth w. Furthermore, ρup¨q is positive and continuous (because u2p¨q ă 0 and
u1p¨q ą 0 and both are continuous).7

5Apart from monotonicity in µ, this requirement encodes a continuity or a tie-breaking assumption. Choosing a weak
(rather than strict) inequality would yield the same results.

6To reduce notation, when there is no risk of confusion, I write c˚ pµ, xq instead of c˚ ppµ, xqq. Similarly, I write Qpµ, xq

instead of Q ppµ, xqq and so on.
7If v “ au ` b for a ą 0, then u and v make the same decisions and are mapped to the same type. Since Aumann and
Serrano (2008) identify agents with utility functions, their model admits this multiplicity. This detail is inconsequential
for my analyses (and theirs). I therefore ignore the question of whether there exist multiple copies of the same type here
and in the rest of the applications.
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Fixed decision types. Constant absolute risk aversion (CARA) agents (ones with ρu ” c ą 0) are
not subject to wealth effects—they make the same decisions at every wealth level.

Monotonicity in types. Pointwise higher types correspond to more concave utility functions. Mono-
tonicity of decisions in types therefore follows from Jensen’s inequality (see Pratt, 1964).

Monotonicity in µ. Monotonicity in µ follows from monotonicity of expected utility preferences
with respect to first-order stochastic dominance. The strict inequality follows from the assumption
that agents reject gambles when they are indifferent.

Richness of preferences. Richness of preferences follows from well-known properties of CARA
functions. Specifically, the existence of a critical ARA level c˚pµ, gq under which a CARA agent is
indifferent can be established by the intermediate value theorem, the uniqueness of this value by
Jensen’s inequality, and its monotonicity in µ by CARA functions being strictly increasing in wealth.

Richness of transactions. The first part holds since for any g P G, for any 0 ă ε ă min tLpgq, Ergsu,
we have g ˘ ε P G. The second part follows from the intermediate value theorem upon noting that
for any level of ARA, c ą 0, a CARA-c agent rejects gambles of the form g ` x for x sufficiently close
to ´ Epgq and accepts gambles of the form g ` x for x sufficiently close to Lpgq.

3 Characterizing Consistent Indices

I begin in Section 3.1 by stating three requirements for an index and showing that a single index meets
these requirements for each decision-making environment that meets the conditions of my model. I
apply this result to several decision-making environments. In Section 3.2, I derive the Aumann–
Seranno index of riskiness for the setting where agents are offered additive gambles. In Section 3.3,
I derive the inverse IRR index of delay for the classic capital budgeting problem in which agents are
offered investment cashflows.

Appendix A includes additional applications that follow the same pattern. Appendix A.1 consid-
ers a standard portfolio allocation problem and derives the generalized Sharpe ratio (Hodges, 1998;
Hellman and Schreiber, 2018), an index that coincides with the Sharpe ratio on the domain of normal
distributions but differs from it outside this domain (as it is sensitive to higher-order moments). Ap-
pendix A.2 considers the setting of information acquisition by investors facing a standard investment
problem (Arrow, 1972) and derives the normalized value of information (Cabrales et al., 2017). Ap-
pendix A.3 derives an index of riskiness for menus of gambles.8 Appendix A.4 considers the setting
of multiplicative gambles and derives Schreiber’s (2013) index of relative risk aversion.

3.1 Characterization

An index (for a decision-making environment) is a function Q : T Ñ R``. I first define a basic mono-
tonicity property for the index: the index Qpµ, xq should be decreasing in µ.

8The index I derive in Appendix A.3 generalizes Michaeli’s (2014, Proposition 6) index for extremely optimistic agents.
As I discuss, the focus of Michaeli (2014) is ambiguity-averse agents. My approach can be used to derive the indices he
derives for ambiguity-averse agents as well as analogous indices for menus of multiplicative gambles.
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Definition 1. An index Q satisfies Property M if for every pµ, xq and pµ1, xq in T, µ1 ă µ implies that
Qpµ, xq ă Qpµ1, xq.

Next, I define a basic continuity property for the index: for a fixed x, the index Qpµ, xq should be
continuous in µ.

Definition 2. An index Q satisfies Property C if for every pµ, xq in T and a sequence of transactions
tpµn, xqu

8

n“1 in T, lim
nÑ8

µn “ µ implies that lim
nÑ8

Q pµn, xq “ Q pµ, xq.

Finally, I introduce a weak duality property. Specifically, Property WD requires that the decisions
of fixed decision types are monotonic in the index.

Definition 3. An index Q satisfies Property WD if for any pair of fixed decision types hp¨q ” c and
f p¨q ” c1 ě c, any status quo w, and any pair of transactions t, t1 P T, if hp¨q rejects t1 at status quo w
and Qptq ą Qpt1q, then f p¨q rejects t at status quo w.

f p¨q

hp¨q

Duality-type axioms

f p¨q

hp¨q

Propoerty S (and duality-type axioms)

Figure 1: Pairs of types whose decisions are required to be monotone in the index under Property S and under
duality-type axioms.

Property WD requires that if f p¨q and hp¨q are fixed decision types (as illustrated in the right panel
of Figure 1), their decisions are monotonic in the index (higher types reject more transactions). This
is a weaker requirement than that of duality-type axioms, which require monotonicity with respect
to pairs of types that can be separated by a fixed decision type (as illustrated in the left panel of
Figure 1). Hence, any justification for duality-type axioms is also a justification for Property WD.

Some readers may find Property WD (and duality-type axioms) displeasing because they rely
on interpersonal comparisons. I revisit this issue in Section 5, replacing Property WD with other
properties that such readers may find less objectionable.

Theorem 1. The index Q satisfies Properties M, C, and WD if and only if Qptq ” ϕp1{c˚ptqq for some
continuous and strictly increasing function ϕ : R`` Ñ R``.

Proof. p ùñ q Consider the index Qp¨q :“ 1{c˚p¨q. It is a well-defined index because c˚p¨q is well
defined and positive for any transaction. I show that it satisfies all three properties:

• Q satisfies Property M: Follows from richness of preferences.
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• Q satisfies Property C: Assume that µn Ñ µ1 and µn ą µ1 for each n. In this case, c˚pµn, xq ą

c˚pµ1, xq for each n (by monotonicity of preferences in µq, and so lim supnÑ8
c˚pµn, xq ě c˚pµ1, xq.

Toward contradiction, assume that lim supnÑ8
c˚pµn, xq ą c˚pµ1, xq. Then there exists c such

that lim supnÑ8
c˚pµn, xq ą c ą c˚pµ1, xq. By richness of transactions, there exists µ such that

c˚ pµ, xq “ c. By monotonicity of preferences in µ (i.e., in the first coordinate), µ ą µ1. However,
this is a contradiction since µn ă µ almost always, and therefore, by the monotonicity of prefer-
ences in µ, these transactions are almost always accepted by constant-decision type f p¨q ” c at
any status quo, which is in violation of monotonicity in types. A symmetric argument applies
to the case in which µn ă µ1, and this suffices to establish the claim for any sequence.

• Q satisfies Property WD: If hp¨q ” c rejects t1 at status quo w, then c˚pt1q ď c (by monotonicity
in types). Thus, if we also have that c˚ptq ă c˚pt1q, then c˚ptq ă c. Therefore, by monotonicity in
types, hp¨q rejects t and if f p¨q ě hp¨q, then f p¨q also rejects t at w as required.

Finally, note that if ϕ is strictly increasing and continuous, then these arguments continue to hold
with respect to ϕ ˝ Qp¨q.

p ðù q Let Qp¨q be an index satisfying all three properties. I begin by showing that Qptq ą Qpt1q if
and only if 1{c˚ptq ą 1{c˚pt1q:

• c˚pµ1, x1q ą c˚pµ, xq ùñ Qpµ1, x1q ď Qpµ, xq: Follows from Property WD by monotonicity in
types (setting h ” c˚pµ, xq and f p¨q ” c˚pµ1, x1q).

• c˚pµ1, x1q ą c˚pµ, xq ùñ Qpµ1, x1q ‰ Qpµ, xq: Assume towards contradiction that c˚pµ1, x1q ą

c˚pµ, xq and Qpµ1, x1q “ Qpµ, xq. Then by richness of transactions, there exists a small ε ą 0
such that pµ ` ε, xq P T and by richness of preferences, c˚pµ1, x1q ą c˚pµ ` ε, xq. Additionally, by
Property M, Qpµ1, x1q “ Qpµ, xq ą Qpµ ` ε, xq. A contradiction (to the previous bullet).

• c˚pµ1, x1q “ c˚pµ, xq ùñ Qpµ1, x1q “ Qpµ, xq: Assume towards contradiction that c˚pµ1, x1q “

c˚pµ, xq but that, without loss of generality, Qpµ1, x1q ą Qpµ, xq. Then by richness of prefer-
ences and of transactions and by Property C, there exists a small ε ą 0 such that pµ1 ` ε, x1q P T,
and in addition, c˚pµ1 ` ε, x1q ą c˚pµ, xq and Qpµ1 ` ε, x1q ą Qpµ, xq. A contradiction (to the first
bullet).

This completes the proof that Qp¨q and 1{c˚p¨q are ordinally equivalent. Hence, there exists an in-
creasing ϕ : R`` Ñ R`` such that Qp¨q “ ϕ p1{c˚p¨qq. It remains to be shown that ϕp¨q is continuous.
To see this, let pµ, xq P T and fix x. Then, since 1{c˚p¨, xq is continuous in µ and has full support, if ϕ

were discontinuous, then Qp¨, xq would also be. However, this would violate Property C.

3.2 Application: Riskiness of Additive Gambles

An index of riskiness is a function Q : G Ñ R` that associates each gamble with a positive real. For
example, the Aumann–Serrano index of riskiness of the gamble g, QASpgq, is implicitly defined by the
equation

E

„

exp
ˆ

´
g

QASpgq

˙ȷ

“ 1,
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and the Foster–Hart index of riskiness of the gamble g, QFHpgq, is implicitly defined by the equation

E

„

log
ˆ

1 `
g

QFHpgq

˙ȷ

“ 0.

Note that an index of riskiness is objective in the sense that its value depends only on the gamble and
not on any agent-specific attribute.

By Theorem 1, the following axioms pin down uniquely the Aumann–Serrano index of riskiness:

• Weak monotonicity. For every gamble g P G and any ε ą 0, if g ` ε P G, then Qpgq ą Q pg ` εq.

• Weak continuity. For every gamble g P G and a sequence of gambles g ` εn, if limnÑ8 εn “ 0,
then limnÑ8 Q pg ` εnq “ Qpgq.

• Weak duality. Let g, g1 P G be a pair of gambles such that Qpgq ą Qpg1q. Let u, v be CARA
agents with ρvp¨q ě ρup¨q. Then for any wealth w, if u rejects g1 at w, then v rejects g at w.

Corollary 1. An index of riskiness Q satisfies weak monotonicity, weak continuity, and weak duality if and
only if there exists a continuous and strictly increasing function ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QAS.

The axioms presented above are labeled “weak” since they are weaker versions of the ones found
in Aumann and Serrano (2008, Theorem D). Specifically, whereas Aumann and Serrano require
monotonicity in first-order stochastic dominance,9 weak monotonicity only requires that a gamble
that pays $1 more in every state of the world be deemed less risky (more favorable) by the index.
Weak continuity is also less demanding than Aumann and Serrano’s continuity requirement. For
example, the Foster–Hart index is weakly continuous, but it does not satisfy Aumann and Serrano’s
continuity requirement (Hart, 2011). Finally, relative to the duality axiom, weak duality—which en-
sures that the index satisfies Property WD—imposes the monotonicity of decisions in the value of
the index only for a subset of pairs of types. Corollary 1 therefore strengthens Aumann and Serrano’s
theorem.

3.3 Application: The Delay of Investment Cashflows

Setting. This section considers the classic capital budgeting problem. An investment cashflow re-
quires an investment of ψ ą 0 at time t in exchange for a stream of income that will arrive in the
future. I denote the set of all possible streams by S with a typical element s “ psn, tnq

Npsq

n“1 , where
sn and tn are both positive for each n. The interpretation is that sn dollars will be paid to the in-
vestor at time t ` tn. The set of investment cashflows, C, consists of pairs pψ, sq such that ψ ą 0,
s “ psn, tnq

Npsq

n“1 P S , and
řNpsq

n“1 sn ą ψ. To economize on notation, I henceforth write N rather than
Npsq or Npcq, noting that it remains cashflow-specific (and not uniformly bounded).

Agents (individuals or social planners) have positive time preference: for any ∆ ą 0, they prefer a
dollar at time t to a dollar at time t ` ∆. An agent i evaluates cashflows using a continuous schedule

9A gamble g first-order stochastically dominates g1 if and only if for every weakly increasing (not necessarily concave) utility
function u and every w P R, E ru pw ` gqs ě E

“

u
`

w ` g1
˘‰

with strict inequality for at least one such function. A gamble
g second-order stochastically dominates g1 if and only if for every weakly increasing weakly concave utility function u and
every w P R, E ru pw ` gqs ě E

“

u
`

w ` g1
˘‰

with strict inequality for at least one such function.
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of positive instantaneous discount rates, riptq. As a result, the net present value (NPV) of an investment
cashflow c ”

´

ψ, psn, tnq
N
n“1

¯

for agent i at time t is

NPVpc, i, tq :“ ´ψ `

N
ÿ

n“1

e
´

t`tn
ş

t
ripzqdz

sn.

Agent i accepts cashflow c at time t if NPVpc, i, tq ą 0 and rejects it otherwise.

Mapping to the General Model. This model is a special case of the general model. First, the be-
havior of an agent i is fully pinned down by rip¨q and t P R. Furthermore, rip¨q is positive and con-
tinuous. Additionally, the decisions of constant discounting rate (CDR) agents (ones with rip¨q ”

d) are time-invariant—they make the same decisions at every point in time. Next, setting T “

tpµ, sq | p1{µ, sq P Cu, the mapping pψ, sq to p1{ψ, sq is a bijection between the set C and T (this trans-
formation ensures that µ, is desirable, unlike ψ). Monotonicity in µ follows from the monotonicity of
NPV with respect to time dominance (Bøhren and Hansen, 1980; Ekern, 1981). The condition as stated
is met thanks to the assumption that agents reject transactions when they are indifferent. Monotonic-
ity in types follows from Lemma A.1.10 For richness of transactions, note first that if pψ, sq P C, then
for sufficiently small ε ą 0, whenever |1{ψ ´ 1{ψ1| ă ε, we have pψ1, sq P C. Richness of preferences
and the second part of richness of transactions follow from Lemma A.2.

Inverse IRR Index of Delay. An index of delay is a function Q : C Ñ R. The fact that Q does not
depend on t makes it a time expression that does not depend on the start date, like “in a week,” as
opposed to expressions like “this Tuesday” whose interpretation depends on whether they are said
on Friday or Monday. This restriction can be interpreted as an axiom.

The internal rate of return (IRR, Fisher, 1930) of the investment cashflow c is the unique positive
solution α˚pcq of the equation

´ψ `

N
ÿ

n“1

e´αtn sn “ 0.

Existence and uniqueness follow from Lemma A.2, which generalizes Norstrøm (1972). For any
investment cashflow c, the inverse IRR index of delay, QD, is equal to the inverse of α˚pcq:

QDpcq :“
1

α˚pcq
.

By Theorem 1, the following three axioms pin down uniquely the inverse IRR index of delay:

• Monotonicity in investment. For any pψ, sq and pψ1, sq in C, if ψ ą ψ1, then Qpψ, sq ą Qpψ1, sq.

• Continuity in investment. For every transaction pψ, sq P C and a sequence of transactions
pψ ` εn, sq, if limnÑ8 εn “ 0, then limnÑ8 Q pψ ` εn, sq “ Qpψ, sq.

10 The use of acceptance and rejection allows me to avoid the reswitching problem of the Cambridge capital controversy (see
Cohen and Harcourt, 2003). Although in general, choices between two cashflows may not be monotonic in agents’
discounting rate, Lemma A.1 shows that acceptance and rejection decisions of investment cashflows are monotonic in
discounting rates.
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• Weak duality. Let c, c1 P C be a pair of cashflows such that Qpcq ą Qpc1q. Let i, j be CDR agents
with rjp¨q ě rip¨q. Then for any time t, if i rejects c1 at t, then j rejects c at t.

Corollary 2. An index of delay Q satisfies monotonicity, continuity, and weak duality if and only if there
exists a continuous and strictly increasing function ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QD.

4 Local Q-Aversion

In this section, I augment the framework with additional structure: some transactions will be con-
sidered “small” and decisions on small transactions will be determined only “locally.” This structure
allows me to consider local tastes to the property measured by the index. I derive conditions under
which these tastes are monotonic in f pwq (where an agent is described by the pair p f p¨q, wq).

4.1 Enriching the Framework

I augment the framework with the following assumptions:

Small transactions. Denote by Tε Ď T the set of transactions of “size” less than ε. I assume that
Tε Ď Tε1 whenever ε1 ą ε.

Locality of small transactions. For any pair of agents p f p¨q, wq and pgp¨q, wq, if f |pw´δ,w`δq ” g|pw´δ,w`δq

for some δ ą 0, then there exists ε ą 0 such that for any t P Tε, the agent p f p¨q, wq accepts t if and only
if pgp¨q, wq accepts t.

Richness of small transactions. For any ε ą 0 and c ą 0, there exists t P Tε such that c˚ptq “ c.

Let Rε
Q p f p¨q, wq denote the highest value that Q assigns to a transaction in Tε that p f p¨q, wq accepts.

Formally,
Rε

Q p f p¨q, wq :“ sup tQptq|t P Tε and p f p¨q, wq accepts tu .

Similarly, let Sε
Q p f p¨q, wq denote the lowest value that Q assigns to a transaction in Tε that p f p¨q, wq

rejects. Formally,
Sε

Q p f p¨q, wq :“ inf tQptq|t P Tε and p f p¨q, wq rejects tu .

Denote by R0
Q p f p¨q, wq and S0

Q p f p¨q, wq the limits of their respective values as ε decreases to zero.11

Finally, we say that p f p¨q, wq is locally at least as averse to Q as pgp¨q, w1q if R0
Q p f p¨q, wq ď S0

Q pgp¨q, w1q.
Informally, this definition requires that the Q-highest local transaction that p f p¨q, wq accepts is ranked
by the index Q lower than the Q-lowest local transaction that pgp¨q, w1q rejects.

11The existence of a limit in the wide sense is guaranteed since Tε Ď Tε1 whenever ε ă ε1. By the positivity of Q, these limits
may take values in r0, 8s.
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4.2 The Relationship Between Preferences and Local Q-Aversion

It is not difficult to construct indices such that R0
Q p f p¨q, wq “ 8 and S0

Q p f p¨q, wq “ 0 for some p f p¨q, wq.
However, such indices are not useful in simplifying the decision-making process, in the sense that
even when the transaction is small, the agent cannot simply rely on the index and a simple cutoff
value (e.g., by only investing in bonds rated AA or higher). The following property, local consistency,
requires that agents can act on such rules, at least when the transaction is small.

Definition 4. An index Q satisfies Property LC if for every decision maker p f p¨q, wq, for every δ ą 0, there
exists λ P R`` and ε ą 0 such that any transaction t in Tε with Qptq ą λ ` δ is rejected by p f p¨q, wq and any
transaction t in Tε with Qptq ă λ ´ δ is accepted by p f p¨q, wq.

Lemma 1 follows immediately from this definition.

Lemma 1. If an index Q satisfies Property LC, then R0
Q p f p¨q, wq ď S0

Q p f p¨q, wq for any decision maker
p f p¨q, wq.

Theorem 2 shows that if Q satisfies Property LC, then the local aversion to Q of agent f p¨q at status
quo w is determined by the value f pwq, where agents with higher values are at least as averse to Q as
agents with lower values.

Theorem 2. For any p f p¨q, wq and pgp¨q, w1q such that f pwq ă gpw1q, if Q satisfies Property LC, then
pgp¨q, w1q is at least as averse to Q as p f p¨q, wq.

ε
0

Rε
Qp f , wq

Sε
Qp f , wq

S0
Qp f , wq

ε
0

Rε
Qpg, w1q

Sε
Qpg, w1q

R0
Qpg, w1q

Figure 2: Decisions over small transactions under Properties LC and F when f pwq ă gpw1q.

Proof. Since f pwq ă gpw1q, we have that c :“ p f pwq ` gpw1qq {2 satisfies f pwq ă c ă gpwq. By con-
tinuity of f and g, there exists δ ą 0 such that for any ŵ P pw ´ δ, w ` δq and ŵ1 P pw1 ´ δ, w1 ` δq,
we have f pŵq ă c ă gpŵ1q. The locality of small transactions attributes to p f p¨q, wq, pgp¨q, w1q and
the constant-decision type c at both status quo values an ε̄-environment in which decisions are based
only on the values of the function in pw ´ δ, w ` δq. Let ε ą 0 be smaller than all these ε̄’s. By
locality of small transactions and monotonicity in types, pgp¨q, w1q rejects any transaction in Tε that
the constant-decision type c rejects at w1. Since constant-decision types make the same decisions
at every status quo, the same holds for the constant-decision type c at status quo w. Furthermore,
by locality of small transactions and monotonicity in types, the constant-decision type c at status
quo w rejects any transaction in Tε that p f p¨q, wq rejects. Hence, Rε1

Qpgp¨q, w1q ď Rε1

Qp f p¨q, wq for any
ε1 ă ε, and so R0

Qpgp¨q, w1q ď R0
Qp f p¨q, wq. To complete the proof, note that by Lemma 1 we have

R0
Qp f p¨q, wq ď S0

Qp f p¨q, wq.
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Before proceeding to the final step of the analysis, I present an additional property that guarantees
that R0

Q ” S0
Q. This property is held by many indices across the settings I study. When R0

Q ” S0
Q, it

is reasonable to think of R0
Q as a numerical index over local preferences for Q (not over transactions).

In applications, I show that this measure coincides with standard notions of local preferences that do
not rely on an index. For example, the local aversion to Aumann–Serrano riskiness coincides with
Arrow–Pratt absolute risk aversion.

Definition 5. An index Q satisfies Property F if for every ε ą 0, the image of Tε under Q is full (i.e., equals
R``).

Richness of small transactions guarantees that indices of the form 1{c˚ptq satisfy Property F.

Lemma 2. If Q satisfies Property F, then R0
Q p f p¨q, wq ě S0

Q p f p¨q, wq for any decision maker p f p¨q, wq.

Proof. By Property F, the image of Tε under Q is full. Furthermore, the union of the set of accepted
transactions and the set of rejected transactions equals the set of all transactions. Therefore, for any
decision maker, the supremum of Q over the set of accepted transactions in Tε (i.e., Rε

Q) is at least as
high as the infimum of Q over the set of rejected transactions in Tε (i.e., Sε

Q) for any ε.

When R0
Q ” S0

Q, it is natural to think of 1{R0
Q and 1{S0

Q as measures of local aversion to the
property measured by the index Q.12 In the applications I present, indices of the form Qptq :“ 1{c˚ptq
satisfy Properties F and LC, and so they also satisfy that R0

Q ” S0
Q, and this implies that the same

holds for their continuous increasing transformations.

Illustration: Additive Gambles. I begin by defining the set of ε-size gambles:

Gε :“ tg P G | maxtLpgq, Mpgqu ă εu .

I now show that with this addition, the additive gambles setting is a special case of my (enriched)
framework. First, if ε1 ă ε, then Gε1 Ď Gε. Furthermore, locality of small transactions is satisfied since
if ρup¨q “ ρvp¨q in an ε-environment of w, then v can be normalized (through an affine transformation)
to coincide with u in this environment. Finally, for richness of small transactions, note that for any
c ą 0 and ε ą 0 the gamble gε,c “ rε, ecε

1`ecε ; ´ε, 1
1`ecε s is accepted by a CARA-ρ agent if and only if

ρ ă c.
Since QASpgε,cq “ 1{c, gambles of this form show that QASp¨q has Property F. Finally, to see that

QASp¨q has Property LC, note that for any u and w, for any δ P p0, ρupwqq, there exists ε ą 0 such that
for any w1 P pw ´ ε, w ` εq, we have ρupw1q P pρupwq ´ δ, ρupwq ` δq. Property LC therefore follows by
locality of small transactions, monotonicity in types, and the fact that a CARA agent accepts a gamble
if and only if the gamble’s Aumann–Serrano riskiness is lower than the inverse of the agent’s ARA.

Corollary 3. For any pair of utilities, u, v, and pair of wealth levels, w, w1, if ρupwq ą ρvpw1q, then u at w is
at least as averse to Aumann–Serrano-riskiness as v at w1.

Lemma A.5 in the appendix shows that an agent u with wealth w is at least as averse to Aumann–
Serrano riskiness as an agent v with wealth w1 if and only if ρupwq ě ρvpw1q.
12I use the notational convention that “1{0 “ 8” and “1{8 “ 0.”
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Illustration: Capital Budgeting. I begin by defining the set of ε-size cashflows:

Cε :“
!

c P C | c “

´

ψ, psn, tnq
N
n“1

¯

and maxttnu ă ε
)

.

I now show that with this addition, the capital budgeting setting is a special case of the enriched
framework. First, if ε1 ă ε, then Cε1 Ď Cε. Furthermore, locality of small transactions is satisfied since
if rip¨q ” rjp¨q in an ε-environment of t, then i and j attribute the same NPV to any ε-size cashflow
beginning at t. Finally, for richness of small transactions, note that for any r ą 0 and ε ą 0, the
cashflow cε,r “ p1, pexppεrq, εqq is accepted by a CDR-δ agent if and only if δ ă r.

Since QDpcε,rq “ 1{r, cashflows of this form show that QDp¨q has Property F. Finally, to see that
QDp¨q has Property LC, note that for any i and t, for any δ P p0, riptqq, there exists ε ą 0 such that for
any t1 P pt ´ ε, t ` εq, we have ript1q P priptq ´ δ, riptq ` δq. Property LC therefore follows by locality
of small transactions, monotonicity in types, and the fact that a CDR agent accepts a cashflow if and
only if its QD-delay is lower than the inverse of the agent’s discounting rate.

Corollary 4. For any pair of agents, i, j, and pair of times t, t1, if riptq ą rjpt1q, then i at t is at least as averse
to QD-delay as j at t1.

Lemma A.6 in the appendix shows that an agent i at time t is at least as averse to QD-delay as
agent j at t1 if and only if riptq ě rjpt1q.

5 Connecting Small and Large Transactions

Samuelson (1963) shows that “if you would always refuse to take favorable odds on a single toss, you must
rationally refuse to participate in any (finite) sequence of such tosses.” However, Samuelson also warns
against undue extrapolation of his theorem, saying, “It does not say that one must always refuse a sequence
if one refuses a single venture: if, at higher income levels the single losses become acceptable, and at lower levels
the penalty of losses does not become infinite, there might well be a long sequence that it is optimal.” This
discussion motivates the following requirement from an index.

Definition 6. An index satisfies Property GS if for any f p¨q and w, we have

S8
Q p f p¨q, wq ě inf

w1
S0

Qp f p¨q, w1q and R8
Q p f p¨q, wq ď sup

w1

R0
Qp f p¨q, w1q.

Property GS links the value of the index on large transactions to its value on small transactions. It
requires that (1) no agent accepts a large transaction of a certain level of Q if he rejects small transac-
tions of the same degree of Q no matter the status quo, and (2) no agent rejects a large transaction of a
certain degree of Q if he accepts small ones of the same degree of Q no matter the status quo. One ra-
tionale for this requirement is that large transactions can be constructed by compounding many small
transactions and so if the index guides the decision maker to always accept (reject) the entire collec-
tion of small transactions, it should make the same recommendation with respect to the composition
of these transactions.13

13For example, Foster and Hart (2013) show that any gamble can be approximated arbitrarily well by exposing the agent
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Relative to Property WD, Property GS has an appealing feature: it does not rely on interpersonal
comparisons. However, Theorem 3 shows that for indices that satisfy Property LC, Property GS
implies Property WD (i.e., Property GS is a stronger requirement than Property WD).14

Theorem 3. Any index Q satisfying Properties LC and GS satisfies Property WD.

Proof. Let hp¨q ” c and f p¨q ” c1 ě c be two fixed decision types with status quo w. Let t, t1 P T
be a pair of transactions such that hp¨q rejects t at w and f p¨q accepts t1 at w. We need to show that
Qpt1q ď Qptq.

Since f p¨q and hp¨q are constant-decision types,

sup
w1

R0
Q
`

f p¨q, w1
˘

“ R0
Q p f p¨q, wq

and
inf
w1

S0
Q
`

hp¨q, w1
˘

“ S0
Q php¨q, wq .

Hence, by Lemma 1 and Theorem 2,

sup
w1

R0
Q
`

f p¨q, w1
˘

ď inf
w1

S0
Q
`

hp¨q, w1
˘

.

By Property GS, this implies

R8
Q p f p¨q, wq ď sup

w1

R0
Q
`

f p¨q, w1
˘

ď inf
w1

S0
Q
`

hp¨q, w1
˘

ď S8
Q php¨q, wq .

By definition, since f p¨q accepts t1, we have

Qpt1q ď R8
Q p f p¨q, wq

and since hp¨q rejects t, we have
S8

Q php¨q, wq ď Qptq.

Altogether we obtain
Qpt1q ď R8

Q p f p¨q, wq ď S8
Q php¨q, wq ď Qptq,

establishing that Q satisfies Property WD.

5.1 Application: Riskiness of Additive Gambles

By Theorem 3, the following two axioms imply the weak duality axiom:

• Local consistency. For any u and w, for any δ ą 0, there exist λ ą 0 and ε ą 0 such that agent u

to the same small gamble over and over, stopping once reaching certain wealth levels. Similarly, an investment cashflow
with IRR r can be approximated arbitrarily well by a composition of identical short horizon cashflows (with different
starting times), each having IRR of r.

14The proof holds for any index such that the relation “at least as averse to Q" is reflexive. By Theorem 2, this includes
indices that satisfy Property LC.

14



with wealth w accepts any gamble g P Gε with Qpgq ă λ ´ δ and rejects any gamble g P Gε with
Qpgq ą λ ` δ.

• Generalized Samuelson. For any u and w, for any level of Q-riskiness c ą 0:

1. if for every w1 there exists ε ą 0 such that u accepts at w1 any gamble g P Gε with Qpgq ď c,
then u accepts any gamble g1 P G with Qpg1q ď c.

2. if for every w1 there exists ε ą 0 such that u rejects at w1 any gamble g P Gε with Qpgq ě c,
then u rejects any gamble g1 P G with Qpg1q ě c.

Corollary 5. An index of riskiness Q satisfies weak monotonicity, weak continuity, local consistency, and
the generalized Samuelson property if and only if there exists a continuous and strictly increasing function
ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QAS.

Proof. By Theorem 3, local consistency and the generalized Samuelson property imply weak duality;
thus, by Corollary 1, QAS and its continuous increasing transformations are the only possible can-
didates. By Corollary 1, all of these indices satisfy weak monotonicity and weak continuity. Local
consistency of QAS was established in Section 4.2, and this property is preserved under continuous
increasing transformations. Since CARA agents with ARA of 1{c accept gambles if and only if their
AS-riskiness is lower than c, the findings of Section 4.2 imply that the requirements of the generalized
Samuelson property apply to agents that have lower (higher) ARA than 1{c, and this follows from
Jensen’s inequality. This argument also applies to continuous increasing transformations of QAS.

5.2 Application: The Delay of Investment Cashflows

By Theorem 3, the following two axioms imply the weak duality axiom:

• Local consistency. For any i and t, for any δ ą 0, there exist λ ą 0 and ε ą 0 such that agent
i at time t accepts any cashflow c P Cε with Qpcq ă λ ´ δ and rejects any cashflow c P Cε with
Qpcq ą λ ` δ.

• Generalized Samuelson. For any i and t, for any level of Q-delay d ą 0:

1. if for every t1 there exists ε ą 0 such that i accepts at t1 any cashflow c P Cε with Qpcq ď d,
then i accepts at t any cashflow c1 P C with Qpc1q ď d.

2. if for every t1 there exists ε ą 0 such that i rejects at t1 any cashflow c P Cε with Qpcq ě d,
then i rejects at t any cashflow c1 P C with Qpc1q ě d.

Corollary 6. An index of delay Q satisfies monotonicity, continuity, local consistency, and the generalized
Samuelson property if and only if there exists a continuous and strictly increasing function ϕ : R`` Ñ R``

such that Q ” ϕ ˝ QD.

Proof. By Theorem 3, local consistency and the generalized Samuelson property imply weak duality;
thus, by Corollary 2, QD and its continuous increasing transformations are the only possible can-
didates. By Corollary 2, all of these indices satisfy weak monotonicity and weak continuity. Local
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consistency of QD was established in Section 4.2, and this property is preserved under continuous
increasing transformations. Since CDR agents with a discounting rate of 1{c accept cashflows if and
only if their QD-delay is lower than c, the findings of Section 4.2 imply that the requirements of the
generalized Samuelson property apply to agents that have an instantaneous discounting rate lower
(higher) than 1{c, and this follows from Jensen’s inequality (see Lemma A.2). This argument also
applies to continuous increasing transformations of QD.

6 Discussion

As discussed in the introduction, a large body of work focuses on partial orders over which all “rea-
sonable” agents agree. Examples include first- and second-order stochastic dominance (Hanoch and
Levy, 1969; Hadar and Russell, 1969; Rothschild and Stiglitz, 1970) in the context of gambles, time
dominance (Bøhren and Hansen, 1980; Ekern, 1981) in the context of investment cashflows, Black-
well’s (1953) order over information structures, and stochastic dominance in the presence of a risk-
free asset (Levy and Kroll, 1978) for portfolio allocation problems. As the indices I derive correspond
to critical constant-decision types, so long as constant-decision types fall under the definition of “rea-
sonable” agents, the indices are monotonic with respect to these orders. Indeed, this is the case in
all of the applications I study, and so each of the indices I derive is monotonic in the relevant partial
orders.

Many popular indices do not have this desirable feature. Take, for example, Value at Risk (VaR)—
a family of indices commonly used in the financial industry (Taleb, 2009). VaR indices depend on a
parameter called the confidence level. For example, the VaR of a gamble at the 95 percent confidence
level is the largest loss that occurs with probability greater than 5 percent.15 VaR indices are not
responsive to changes in the “tails,” and as a result they are only weakly increasing in first-order
stochastic dominance, and they may decrease as a result of mean-preserving spreads.

Turvey (1963) reports that in the domain of investment cashflows, the payoff period—the number
of years it takes before the undiscounted sum of the gains realized from the investment equals its
capital cost—was once commonly used by practitioners but “[p]ractical men in industries with long-
lived assets have perforce been made aware of the deficiencies of this criterion.” The payoff period suffers
from deficiencies analogous to those of VaR. For example, it is not responsive to changes in the tails.
In this sense, the lessons learned by investors in long-lived assets align with those learned more
recently by investors in risky assets with rare tail events (Taleb, 2009).

This monotonicity property is especially appealing in the context of performance indices for
portfolio allocation problems. In Appendix A.1, I derive the generalized Sharpe ratio for this en-
vironment. Many alternative performance indices, including ones inspired by Aumann and Serrano
(2008), rank transactions in “unreasonable” ways. For example, the Sharpe ratio is not monotonic
with respect to first-order stochastic dominance (even if r1 is first-order stochastically dominated
by r2, the Sharpe ratio may rank r1 higher than r2), the inverse-AS performance index (Kadan and
Liu, 2014) is not monotonic with respect to stochastic dominance in the presence of a risk-free asset,

15For consistency with the literature, in the present paper, I required indices to take only positive values, which rules out
VaR. However, since my analysis is ordinal, one can simply take the exponent of VaR to satisfy this requirement.
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and the return-to-AS-riskiness index (Aumann and Serrano, 2008; Homm and Pigorsch, 2012a) is not
quasiconcave. I elaborate on performance indices and their properties in Appendix D.
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A Additional Applications of Theorem 1

A.1 A Generalized Sharpe Ratio

This section considers portfolio allocation problems where an investor faces the choice of investing
his entire wealth in a risk-free asset with a guaranteed return of r f , or paying a fee and gaining access
to a risky asset, in which case the investor is free to optimally allocate his portfolio between the two
assets. Agents are as in the additive gambles setting. Transactions take the form pψ, r ´ r f q where
r ´ r f P G is the (random) excess return of the risky asset, and ψ ą 0 is the fee that must be paid to
gain access to the risky asset. I denote the set of all transactions by R – R`` ˆ G. An agent u with
wealth w accepts pψ, r ´ r f q whenever

max
αě0

E
“

u
`

pw ´ ψq ¨ p1 ` r f q ` α ¨ pr ´ r f q
˘‰

ą upwp1 ` r f qq (1)

and rejects it otherwise.
I focus on indices of performance that depend on r f only through r ´ r f . Under this restriction—

that could be interpreted as an axiom—there is no loss of generality in assuming that r f “ 0.

Mapping to the general model. This model, which is adapted from Hellman and Schreiber (2018),
is a special case of the general model. First, agents’ behavior is fully captured by ρupwq and w. Thus,
they can also be described by a status quo w P R and all continuous functions from R to R`` (rep-
resenting ρu). Additionally, CARA agents are not subject to wealth effects—they make the same
decision at any wealth level. Next, setting X :“ G and T :“ R`` ˆ X, the mapping pψ, gq to p1{ψ, gq

is a one-to-one correspondence between R and T (this transformation ensures that the first coordi-
nate, µ, is desirable, unlike ψ). Monotonicity in µ follows from the monotonicity of expected utility
preferences with respect to first-order stochastic dominance. The condition as stated is met thanks
to the assumption that agents reject transactions when they are indifferent. Monotonicity in types
follows from Jensen’s inequality (see Pratt, 1964) as higher types can always mimic the portfolios
of lower types. For richness of transactions, first note that if pψ, gq P R, then for sufficiently small
ε ą 0, whenever |1{ψ ´ 1{ψ1| ă ε, we have pψ1, gq P R. Richness of preferences and the second part
of richness of transactions are simple to show using the theorem of the maximum (see, e.g., Hellman
and Schreiber, 2018, Appendix C).

The generalized Sharpe ratio. An index of performance is a function Q : R Ñ R``. Following the
convention in the literature, unlike in the additive gambles setting, in this setting, higher values of
the index are interpreted as higher performance (more desirable).

For each g P G, denote by α˚
ρ pgq the optimal level of wealth that a CARA agent with ARA ρ invests

in the risky asset with excess return g, and observe that (for any w and r f ) this level is implicitly
defined by

E
”

ρg ¨ exp
´

´α˚
ρ pgqρg

¯ı

“ 0.

The index of performance QGS of the transaction pψ, gq is the positive solution, ρ˚, of the equation

ρ “ ´
1
ψ

log E
”

exp
´

´ρα˚
ρ pgqg

¯ı

.
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The index QGS is a monotonic transformation of the index S that Hellman and Schreiber (2018) de-
velop for this setting. Hence, it is well defined and the indices are ordinally equivalent. For any
fixed fee ψ, it is ordinally equivalent to the generalized Sharpe ratio (Hodges, 1998; Zakamouline
and Koekebakker, 2009). I choose the formulation above to facilitate comparison across sections and
because its interpretation may be more natural: it is the level of ARA that makes a CARA agent
indifferent between accepting and rejecting the transaction pψ, gq.

By Theorem 1, the following three axioms pin down QGS uniquely:

• Monotonicity in fee. For every pψ, gq and pψ1, gq in R, if ψ ą ψ1, then Qpψ1, gq ą Q pψ, gq.

• Continuity in fee. For every transaction pψ, gq P R and a sequence of transactions pψ ` εn, gq,
if limnÑ8 εn “ 0, then limnÑ8 Q pψ ` εn, gq “ Qpψ, gq.

• Weak Duality. Let t, t1 P R be a pair of transactions such that Qptq ą Qpt1q. Let u, v be CARA
agents with ρvp¨q ě ρup¨q. Then, for any wealth w, if u rejects t at w, then v rejects t1 at w.

Corollary 7. An index of performance Q satisfies monotonicity in fee, continuity in fee, and weak duality if
and only if there exists a continuous and strictly increasing function ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QGS.

Theorem 1 of Hellman and Schreiber (2018) delivers a similar result. Corollary 7 differs from their
theorem in that the monotonicity and continuity axioms correspond to the fee (rather than the excess
return), and that I only require weak duality (rather than duality).

A.2 The Value of Information for Investors

This section considers the problem of information aquisition by investors (Cabrales et al., 2013, 2017).
Agents’ preferences are as in the additive gambles setting. Agents are facing uncertainty about the
state of nature, k P t1, ..., Ku, over which they hold a full-support prior belief q P ∆pKq. They have
access to Arrow–Debreu securities, traded according to the price vector p P RK

``, with
řK

i“1 pi “ 1.
This yields the set of investment opportunities

B˚ “

#

b P RK|
ÿ

kPK

pkbk ď 0

+

.

When an agent with initial wealth w chooses investment b P B˚ and state k is realized, his wealth
becomes w ` bk. Following Cabrales et al. (2017), I focus on the case that p “ q. In this important
special case, the set B˚ can be interpreted as consisting of all no-arbitrage investment opportunities.

Before choosing his investment, the agent has an opportunity to engage in an information transac-
tion pψ, αq, where ψ ą 0 is the cost of the transaction, and α is a finite-support distribution over pos-
teriors that respects Bayes’ law. Namely, denoting the probability with which the posterior qs P ∆pKq

is realized by qαpsq ą 0, we have
ř

s qαpsqqs “ q. Additionally, at least one full-support posterior has
positive probability (information structures where each posterior excludes some state allow agents
to guarantee arbitarily large profits in each state). Denote this set of information transactions by A.16

16For comparability, note that Cabrales et al. (2017) describe the informational content of the transaction by a signal struc-
ture, and so the distribution over posteriors it induces depends on the prior through Bayes’ law. Inspired by Kamenica
and Gentzkow (2011), I consider distributions over posteriors, which simplifies the exposition and makes the connections
with other settings clearer.
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Agents optimally choose an investment opportunity in B˚ given their beliefs. Therefore, the ex-
pected utility of an agent with utility u, initial wealth w and beliefs q1 is

Vpu, w, q1q :“ sup
bPB˚

ÿ

k

q1
ku pw ` bkq .

Accordingly, an agent accepts the information transaction pψ, αq if

ÿ

s
qαpsqVpu, w ´ ψ, qsq ą Vpu, w, qq

and rejects it otherwise. When p “ q, we have that Vpu, w, qq “ upwq, as certainty is optimal for any
risk averse investor that has no informational advantage.

The normalized-value index. An index of appeal of information transactions is a function Q : A Ñ

R``. Following the convention in the literature, unlike in the additive gambles setting, in this setting,
higher values of the index are interpreted as more informative (more desirable). The normalized-value
index of appeal, QNV , first suggested by Cabrales et al. (2017), is defined by

QNVpψ, αq :“ ´
1
ψ

«

log

˜

ÿ

s
qαpsq exp p´d pp || qsqq

¸

` d pp||qq

ff

,

where
d pp||qq :“

ÿ

k

pk log
pk

qk

is the Kulback-Leibler divergence (Kullback and Leibler, 1951). The index QNV can be interpreted as the
critical level of ARA below (above) which a CARA agent accepts (rejects) the transaction (Cabrales
et al., 2017). When p “ q we therefore have

QNVpψ, αq :“ ´
1
ψ

«

log

˜

ÿ

s
qαpsq exp p´d pp || qsqq

¸ff

.

Since the current model is a special case of the general model (the proof is almost identical to the
portfolio allocation setting of Appendix A.1), by Theorem 1, the following three axioms pin down
QNV uniquely:

• Monotonicity in fee. For every pψ, αq and pψ1, αq in A, if ψ ą ψ1 then Qpψ1, αq ą Q pψ, αq.

• Continuity in fee. For every transaction pψ, αq P A and a sequence of transactions pψ ` εn, αq,
if limnÑ8 εn “ 0 then limnÑ8 Q pψ ` εn, αq “ Qpψ, αq.

• Weak Duality. Let t, t1 P A be a pair of gambles such that Qptq ą Qpt1q. Let u, v be CARA agents
with ρvp¨q ě ρup¨q. Then, for any wealth w, if u rejects t at w, then v rejects t1 at w.

Corollary 8. An index of appeal Q satisfies monotonicity in fee, continuity in fee, and weak duality if and
only if there exists a continuous and strictly increasing function ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QNV .
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A.3 Riskiness of Menus of Gambles

This section considers a setting identical to the additive gambles setting with the exception that trans-
actions correspond to a menus of finite-valued random variables from which the agent can choose.
An agent u with wealth w therefore accepts the menu xM if

sup
gPxM

E rupw ` gqs ą upwq

and rejects it otherwise. I assume that the set of all possible transactions, GM, consists of each menu,
xM, such that there exists L ą 0 so that each random variable in xM takes a value weakly lower than
´L with positive probability. Let LpxMq denote the largest value of such L. I further assume that
xM

Ş

G ‰ H and infgPxM
Ş

GQASpgq ą 0. These assumptions guarantee that no menu is accepted or
rejected by all agents at all wealth levels.

A special case of a transaction in GM is any singleton menu consisting of a gamble g P G. But,
generally, different agents may choose different gambles from the menu if they accepts the transac-
tion. For example, in the portfolio allocation problem of Appendix A.1 agents control their level of
exposure to the risky asset, and in the information acquisition setting of Appendix A.2 agents can
choose any investment opportunity for each realized posterior belief.

Mapping to the general model. This model is a special case of the general model. First, agents’
behavior is fully captured by ρupwq and w. Thus, they can also be described by a status quo w P R

and all continuous functions from R to R`` (representing ρu). Additionally, CARA agents are not
subject to wealth effects—they make the same decision at any wealth level. Next, denote X :“
!

xM ` LpxMq | xM P GM
)

and let T :“ tpl, xq P R`` ˆ X | x ´ l P GMu. Monotonicity in µ follows
from the monotonicity of expected utility preferences with respect to first-order stochastic domi-
nance. The condition as stated is met thanks to the assumption that agents reject transactions when
they are indifferent. Monotonicity in types follows from Jensen’s inequality (see Pratt, 1964), since
higher types can always mimic the lottery choices of lower types. For richness of transactions, first
note that LpxMq is strictly positive for any M P GM and so if pl, xq P T that the same holds for a small
environment of l. The second part of richness of transactions and richness of preferences follow from
the assumptions on GM by the results on additive gambles (Section 3.2).

An index of riskiness for menus of additive gambles. An index of riskiness for menus of additive
gambles is a function Q : GM Ñ R``. Denote

QGM
´

xM
¯

:“ inf
gPxM

Ş

G
QASpgq.

The restrictions on the set of transactions guarantee that QGM is a well-defined index.

By Theorem 1, the following three axioms pin down QGM uniquely:

• Weak Monotonicity. For every menu xM P GM and any ε ą 0, if xM ` ε P GM then QpxMq ą

Q
´

xM ` ε
¯

.

• Weak Continuity. For every menu xM P GM and a sequence of menus, xM ` εn, if limnÑ8 εn “ 0
then limnÑ8 Q

´

xM ` εn

¯

“ QpxMq.
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• Weak Duality. Let xM,xM1 P GM be a pair of menus such that QpxMq ą QpxM1q. Let u, v be CARA
agents with ρvp¨q ě ρup¨q. Then, for any wealth w, if u rejects xM1 at w, then v rejects xM at w.

Corollary 9. An index of riskiness for menus of additive gambles Q satisfies weak monotonicity, weak continu-
ity, and weak duality if and only if there exists a continuous and strictly increasing function ϕ : R`` Ñ R``

such that Q ” ϕ ˝ QGS.

Michaeli (2014, Section 3.4) contains an extension that considers a special case of the model pre-
sented here. He is interested in a situation where the agent is offered a gamble whose outcome
depends on the state of the word, but the agent has multiple “plausible” priors and he is extremely
optimistic in the sense that his preferences take the maximax form (Gilboa and Schmeidler, 1989).
Michaeli provides a different axiomatization for (the restriction of) QGM for that setting. Of note, the
main focus of Michaeli (2014) is on ambiguity averse agents, especially ones with utilities that take the
maximin form (Gilboa and Schmeidler, 1989) or use the Hurwicz criterion (Hurwicz, 1951). His main
models are also special cases of the general model, and so variants of Corollary 9 for his settings can
be derived using Theorem 1, and the resulting indices coincide with the ones he derives.

A.4 Riskiness of Multiplicative Gambles

This section considers the multiplicative gambles setting. Agents’ preferences are summarized by a
von Neumann–Morgenstern utility function for money, u : R`` Ñ R, and a status-quo wealth, w P

R``. Utility functions are strictly increasing, strictly concave, and twice continuously differentiable.
Furthermore, they satisfy

ϱupwq :“ ´w
u2pwq

u1pwq
ą 1.

The function ϱupwq is the Arrow–Pratt coefficient of relative risk aversion (RRA) of u at w. The restriction
on agents’ RRA guarantees that they are ruin averse (Hart, 2011)—they are never willing to accept
gambles that could bankrupt them.

Agents are offered a multiplicative gamble r P M :“ tr P G | E rlogp1 ` rqs ą 0u. If an agent
with wealth w accepts the gamble r, his resulting wealth is distributed according to wp1 ` rq. The
restriction that E rlogp1 ` rqs ą 0 is equivalent to QFHprq ă 1. It guarantees that if a gamble is taken
repeatedly it does not lead the agent to ruin (Foster and Hart, 2009). A gamble r is accepted by u at
wealth w if E rupwp1 ` rqqs ą upwq, and is rejected otherwise.

Mapping to the general model. This model, that was studied in Schreiber (2013) and Li (2014), is a
special case of the general model. First, agents’ behavior is fully captured by ϱup¨q and w. Thus, they
can also be described by a status quo in R (describing logpwq) and all continuous functions from R to
R`` (describing ϱu plogpwqq ´ 1). Additionally, CRRA agents (ones with constant ϱu ´ 1 ” c ą 0) are
not subject to wealth effects—they make the same decision at any wealth level. Next, the set M is in
one-to-one correspondence with the set of pairs pµ, xq such that µ represents E rlogp1 ` rqs and x is a
finite-valued mean-zero non-degenerate random variable representing logp1 ` rq ´ E rlogp1 ` rqs.17

Monotonicity in µ follows from monotonicity of expected utility preferences with respect to first-
order stochastic dominance. The condition as stated is met thanks to the assumption that agents

17Since the set M is a subset of G, I could have chosen another correspondence where µ and x are as in the additive gambles
setting and T :“ tpµ, xq | µ ` x P Mu. Although this approach would “work” technically, it would require a stronger or
a less natural monotonicity axiom, and so I refrain from using it.
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reject transactions when they are indifferent. Monotonicity in types follows from Jensen’s inequality
(see Pratt, 1964). To see that the set of transactions meets the richness requirements, note that if
r P M, then for sufficiently small ε, we have Erlogp1 ` rq ˘ εs ą 0 (since Erlogp1 ` rqs ą 0) and
exp plogp1 ` rq ˘ εq ´ 1 P G (by continuity of log and exp). Richness of preferences and the second
part of richness of transactions are established in Lemma A.4.

The Index of Relative Riskiness. An index of (relative) riskiness is a function Q : M Ñ R``. The
index of relative riskiness, QS, first suggested by Schreiber (2013) (see also Li, 2014), is implicitly

defined by the equation E

„

p1 ` rq
´ 1

QSprq

ȷ

“ 1.

By Theorem 1, the following three axioms pin down QS uniquely:

• Weak Monotonicity. For every gamble r P M and any ε ą 0, if p1 ` εqp1 ` rq ´ 1 P M then
Qprq ą Q pp1 ` εqp1 ` rq ´ 1q.

• Weak Continuity. For every gamble r P M and a sequence of gambles tp1 ` εnqp1 ` rq ´ 1u, if
limnÑ8 εn “ 0 then limnÑ8 Q pp1 ` εnqp1 ` rq ´ 1q “ Qprq.

• Weak Duality. Let r, r1 P M be a pair of gambles such that Qprq ą Qpr1q. Let u, v be CRRA
agents with ϱvp¨q ě ϱup¨q. Then, for any wealth w, if u rejects r1 at w, then v rejects r at w.

As in the additive gambles setting, the axioms are weaker versions of their counterparts in previ-
ous studies (Schreiber, 2013; Li, 2014). Hence, they strengthen their results and their justifications for
duality apply.

Corollary 10. An index of relative riskiness Q satisfies monotonicity, continuity, and weak duality if and only
if there exists a continuous and strictly increasing function ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QS.

To the best of my knowledge, no previous paper has considered menus of multiplicative gambles.
However, the analysis of the previous section can be replicated in that case. Furthermore, the same
remark holds for ambiguity averse agents as in Michaeli (2014).

B Additional Application of Theorem 2

B.1 A Generalized Sharpe Ratio

To begin with, I define the set of ε-size transactions

Rε :“
"

pψ, gq P R | g P Gε, QASpgq ą
1
ε

, ψ ă ε

*

.

Even though the set of excess returns coincides with the set of additive gambles G, the require-
ment that g P Gε is, on its own, not restrictive in the portfolio allocation problem, since the agent
can scale her investment level, making her indifferent between gaining access to g or to λg for any
g and λ ą 0. Similarly, the requirement that QASpgq ą 1

ε is, on its own, not restrictive in the portfo-
lio allocation problem, since QASpλgq “ λQASpgq for any g and λ ą 0. However, since for small ε,
QASpgq is approximately equal to VARpgq{ Ergs for g P Gε (see Heller and Schreiber, 2020), when the
two restrictions are combined, they essentially require that the agent must be exposed to substantial
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losses relative to her target expected return. The final requirement from transactions in Rε is that
their price is low.

I now show that, with this addition, this setting is a special case of the enriched framework.
Recalling that, for consistency with the literature, I assumed that higher values of the index are

more desirable, I begin by adjusting the local preferences definition.18 Given an index of performance
Q, a utility function u, a wealth level w, and ε ą 0, let

Rε
Qpu, wq :“ inf tQprq| r P Rε and r is accepted by u at wu ,

and
Sε

Qpu, wq :“ sup tQprq| r P Rε and r is rejected by u at wu .

In words, Rε
Qpu, wq is the Q-performance of the lowest performing accepted transaction in Rε according

to Q. Similarly, Sε
Qpu, wq is the Q-performance of the highest performing rejected transaction in Rε

according to Q. Of note, the supremum and the infimum are in the “reversed” direction from the
general model, as higher values of the index are to be more desirable.

Accordingly, we say that u at w has at least as much taste for Q-performance as v at w1 if for every
δ ą 0 there exists ε ą 0 such that Sε

Qpu, wq ď Rε
Qpv, w1q ` δ. Additionally, I denote R0

Qpu, wq :“
lim

εÑ0`
Rε

Qpu, wq and S0
Qpu, wq :“ lim

εÑ0`
Sε

Qpu, wq.

I now turn to showing that this environment meets the conditions of the enriched framework.
First, if ε1 ă ε then Rε1 Ď Rε. Furthermore, locality of small transactions follows from Lemma A.7.
To show richness of small transactions consider transactions of the form pψ, gq, where ψ ă ε and
g “ r´ε, 1{2; εp1 ` αq, 1{2s. Let c ą 0. For sufficiently low α, we have c˚pψ, gq ă c. And since c˚p¨q is
continuously increasing in price (in fact, it is homogeneous of degree ´1 in price) we can decrease ψ

to ψ1 ă ψ so that c˚pψ1, gq “ c.
The argument above also shows that QGSp¨q “ 1{c˚p¨q has Property F. Finally, QGSp¨q has Prop-

erty LC by locality of small transactions, monotonicity in types, and the fact that a CARA agent
accepts a transaction if and only if its QGS value higher than the agent’s ARA.

Corollary 11. For any pair of utilities, u, v, and pair of wealth levels w, w1, if ρupwq ą ρvpw1q then v at w1

has at least as much taste for QNV-informativeness as u at w.

In fact, using the “sandwiching” technique of Lemma A.5 one can show a stronger result: agent
u with wealth w has at least as much taste for QGS-performance as agent v with wealth w1 if and only
if ρupwq ď ρvpw1q.

B.2 The Value of Information for Investors

To begin with, I define the set of ε-size information transactions

Aε :“
!

pµ, αq P A |

›

›

›
qs1

´ qs
›

›

›

8
ă ε for all s, s1 s.t. min

␣

qαps1q, qαpsq
(

ą 0
)

.19

I now show that, with this addition, this setting is a special case of the enriched framework.
Recalling that for consistency with the literature I assumed that higher values of the index are more

18This can be avoided by considering indices for the form 1{Q that yield the reverse ranking relative to Q.
19There are other ways to define “small” transactions that are more appealing when considering the “generalized Samuel-

son” interpretation and the case of p ‰ q. One approach is presented in Appendix B.3.
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desirable, I begin by adjusting the local preferences definition.20 Given an index of informativeness
Q, a utility function u, a wealth level w, and ε ą 0, let

Rε
Qpu, wq :“ inf tQpaq| a P Aε and a is accepted by u at wu ,

and
Sε

Qpu, wq :“ sup tQpaq| a P Aε and a is rejected by u at wu .

In words, Rε
Qpu, wq is the Q-informativeness of the least informative accepted transaction in Aε accord-

ing to Q. Similarly, Sε
Qpu, wq is the Q-informativeness of the most informative rejected transaction in

Aε according to Q. Of note, the supremum and the infimum are in the “reversed” direction from the
general model, as higher values of the index are to be more desirable.

Accordingly, we say that u at w has at least as much taste for Q-informativeness as v at w1 if for
every δ ą 0 there exists ε ą 0 such that Sε

Qpu, wq ď Rε
Qpv, w1q ` δ. Additionally, I denote R0

Qpu, wq :“
lim

εÑ0`
Rε

Qpu, wq and S0
Qpu, wq :“ lim

εÑ0`
Sε

Qpu, wq.

I now turn to showing that this environment meets the conditions of the enriched framework.
First, if ε1 ă ε then Aε1 Ď Aε. Furthermore, locality of small transactions follows from Lemma 4 of
Cabrales et al. (2017). For richness of small transactions note that when increasing the fee ψ from zero
to infinity the critical CARA agent changes continuously (in fact, it is homogeneous of degree ´1),
and membership in Aε is independent of the fee.

Similarly, to show that QNVp¨q has Property F, one can fix the informational content of the trans-
action and change ψ. Finally, QNVp¨q has Property LC by locality of small transactions, monotonicity
in types, and the fact that a CARA agent accepts a transaction if and only if its QNV value higher than
the agent’s ARA.

Corollary 12. For any pair of utilities, u, v, and pair of wealth levels w, w1, if ρupwq ą ρvpw1q then v at w1

has at least as much taste for QNV-informativeness as u at w.

Lemma A.8 further shows that an agent u with wealth w has at least as much taste for QNV-
informativeness as agent v with wealth w1 if and only if ρupwq ď ρvpw1q.

B.3 Menus of Additive Gambles

To begin with, I define the set of ε-size menus

GMε :“
!

xM P GM | Pr p|g| ă εq “ 1 for all g P xM
)

.

I now show that, with this addition, the setting of menus of additive gambles is a special case of
the enriched framework. First, if ε1 ă ε then GMε1 Ď GMε. Furthermore, locality of small transac-
tions is satisfied as if ρup¨q “ ρvp¨q in an ε-environment of w, then v can be normalized (through an
affine transformation) to coincide with u in this environment. Finally, richness of small transactions
is inherited from the additive gambles setting since each gamble in G is a singleton menu in GM.

Since QGM coincides with QAS on singleton menus, QGM inherits Property F from QAS since each
gamble in Gε is a singleton menu in GMε. Finally, to see that QGM has Property LC, note that for
any u and w, for any δ P p0, ρupwqq, there exists ε ą 0 such that for any w1 P pw ´ ε, w ` εq we

20This can be avoided by considering indices for the form 1{Q that yield the reverse ranking relative to Q
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have ρupw1q P pρupwq ´ δ, ρupwq ` δq. Property LC therefore follows by locality of small transactions,
monotonicity in type, and the fact a CARA agent accepts a menu if and only if it contains a gamble
whose Aumann–Serrano riskiness is lower than the inverse of the agent’s ARA.

Corollary 13. For any pair of utilities, u, v, and pair of wealth levels w, w1, if ρupwq ą ρvpw1q then u at w is
at least as averse to QGM-riskiness as v at w1.

One can further show, using Lemma A.5, that an agent u with wealth w is more averse to Aumann–
Serrano riskiness than agent v with wealth w1 if and only if ρupwq ą ρvpw1q.

B.4 Riskiness of Multiplicative Gambles

An analysis nearly identical to the setting of additive gambles goes through (the only difference is
that RRA rather than ARA plays the key role). It follows that QS has Properties F and LC and that
for every utility function u and every w, 1{R0

QS pu, wq “ 1{S0
QS pu, wq “ ϱupwq.

C Additional Application of Theorem 3

C.1 A Generalized Sharpe Ratio

By Theorem 3, the following two axioms imply the weak duality axiom:

• Local Consistency. For any u and w, for any δ ą 0, there exist λ ą 0 and ε ą 0 such that agent
u with wealth w rejects any transaction t P Rε with Qptq ă λ ´ δ and accepts any transaction
t P Rε with Qptq ą λ ` δ.

• Generalized Samuelson. For any u and w, for any level of Q-performance c ą 0:

1. if for every w1 there exists ε ą 0 such that u accepts at w1 any transaction t P Rε with
Qptq ě c, then u accepts any transaction t1 P R with Qpt1q ě c.

2. if for every w1 there exists ε ą 0 such that u rejects at w1 any transaction t P Rε with
Qptq ď c, then u rejects any transaction t1 P R with Qpt1q ď c.

Corollary 14. An index of performance Q satisfies monotonicity in fee, continuity in fee, local consistency,
and the generalized Samuelson property if and only if there exists a continuous and strictly increasing function
ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QGS.

C.2 The Value of Information for Investors

By Theorem 3, the following two axioms imply the weak duality axiom:

• Local Consistency. For any u and w, for any δ ą 0, there exist λ ą 0 and ε ą 0 such that agent
u with wealth w rejects any transaction t P Aε with Qptq ă λ ´ δ and accepts any transaction
t P Aε with Qptq ą λ ` δ.

• Generalized Samuelson. For any u and w, for any level of Q-informativeness c ą 0:

1. if for every w1 there exists ε ą 0 such that u accepts at w1 any transaction t P Aε with
Qptq ě c, then u accepts any transaction t1 P A with Qpt1q ě c.
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2. if for every w1 there exists ε ą 0 such that u rejects at w1 any transaction t P Aε with
Qptq ď c, then u rejects any transaction t1 P A with Qpt1q ď c.

Corollary 15. An index of informativeness Q satisfies monotonicity in fee, continuity in fee, local consistency,
and the generalized Samuelson property if and only if there exists a continuous and strictly increasing function
ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QNV .

C.3 Riskiness of Menus of Gambles

By Theorem 3, the following two axioms imply the weak duality axiom:

• Local Consistency. For any u and w, for any δ ą 0, there exist λ ą 0 and ε ą 0 such that agent u
with wealth w rejects any menu xM P GMε with QpxMq ă λ ´ δ and accepts any menu xM P GMε

with QpxMq ą λ ` δ.

• Generalized Samuelson. For any u and w, for any level of Q-informativeness c ą 0:

1. if for every w1 there exists ε ą 0 such that u accepts at w1 any menu xM P GMε with
QpxMq ě c, then u accepts any menu xM1 P GM with QpxM1q ě c.

2. if for every w1 there exists ε ą 0 such that u rejects at w1 any menu xM P GMε with QpxMq ď

c, then u rejects any menu xM1 P GM with QpxM1q ď c.

Corollary 16. An index of riskiness Q satisfies weak monotonicity, weak continuity, local consistency, and
the generalized Samuelson property if and only if there exists a continuous and strictly increasing function
ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QGM.

Discussion. One of the justifications for the generalized Samuelson property is that large transac-
tions are equal, at least approximately, to the composition of many small transactions. This may not
be the case in the first two applications discussed in this appendix (since such compositions may lie
outside of the domain of transactions in these applications). However, since these transactions are
special cases of menus of gambles, one can justify the local consistency requirement as a requirement
on this larger domain.

C.4 Riskiness of Multiplicative Gambles

By Theorem 3 the following two axioms imply the weak duality axiom:

• Local Consistency. For any u and w, for any δ ą 0, there exist λ ą 0 and ε ą 0 such that agent
u with wealth w accepts any gamble r P Mε with Qprq ă λ ´ δ and rejects any gamble r P Mε

with Qprq ą λ ` δ.

• Generalized Samuelson. For any u and w, for any level of Q-riskiness c ą 0:

1. if for every w1 there exists ε ą 0 such that u accepts at w1 any gamble r P Mε with Qprq ď c,
then u accepts any gamble r1 P M with Qpr1q ď c.

2. if for every w1 there exists ε ą 0 such that u rejects at w1 any gamble r P Mε with Qprq ě c,
then u rejects any gamble r1 P M with Qpr1q ě c.

Corollary 17. An index of riskiness Q satisfies weak monotonicity, weak continuity, local consistency, and
the generalized Samuelson property if and only if there exists a continuous and strictly increasing function
ϕ : R`` Ñ R`` such that Q ” ϕ ˝ QS.
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D Properties of the Generalized Sharpe Ratio

In this appendix, I show that QGS has several desirable properties relative to other related indices. As
the literature on performance indices is vast, I focus on approaches that are related to Aumann and
Serrano (2008).

Stochastic dominace in the presence of a risk-free asset. We say that r first- (second-) order stochas-
tically dominates r1 in the presence of a risk-free asset r f (Levy and Kroll, 1978) if for every α ą 0 there ex-
ists β ą 0 such that αr1 ` p1 ´ αq r f is first- (second-) order stochastically dominated by βr ` p1 ´ βq r f .
That is, for any portfolio one can construct using r f and r1, one can construct a portfolio that domi-
nates it using r f and r. This partial order includes first-order stochastic dominance as a special case.
As discussed in Section 6, the index QGS is monotonic with respect to stochastic dominance (of any
order) in the presence of a risk-free asset, and in particular, it is homogeneous of degree zero.

Quasiconcavity. Consider two excess returns, g, g1 P G, and a third excess return, g2, that yields g
with probability p and g1 with probability 1 ´ p (independently of g and g1). An index of performance
Q is quasiconcave if for any g, g1 P G and p P p0, 1q, we have Qpg2q ď max tQpgq, Qpg1qu. No decision
maker strictly prefers g2 to both g and g1, but the opposite is quite common. The reason is that,
generally, the agent’s optimal scale of investment (α˚

u,w) differs between assets, but the compound
lottery g2 requires them to commit to one scale for whichever asset will be realized. Therefore, the
expected utility from the optimal scale of investment in g2 is lower than the average (with weights
p and 1 ´ p) of these utilities for g and g1. An upshot of the discussion in Section 6 is that QGS is
quasiconcave.

The Sharpe ratio. The Sharpe ratio (Sharpe, 1966) is a measure of “risk-adjusted returns” or “reward-
to-variability.” It is frequently used as a performance measure for portfolios (e.g., Welch, 2008). For-
mally, it is defined by

Sh
`

r ´ r f
˘

:“
E
“

r ´ r f
‰

σ
`

r ´ r f
˘ .

The validity of this measure relies critically on several assumptions about the distribution of returns
as well as on agents’ preferences (Meyer, 1987). In particular, for general distributions, the Sharpe
ratio is not monotonic with respect to first-order stochastic dominance: risky asset r1 may have re-
turns that are always higher than those of asset r2 yet it will be ranked lower according to the index
(Aumann and Serrano, 2008).21

Inverse AS-riskiness. Motivated by the Sharpe ratio’s nonmonotonicity with respect to first-order
stochastic dominance and its lack of sensitivity to high-order moments, Kadan and Liu (2014) propose
a reinterpretation of the inverse of the AS index of riskiness as a performance measure and show

21This undesirable property of the Sharpe ratio is related to the fact that it depends only on the first two moments of the
distribution. These moments are sufficient statistic for a normal distribution, and therefore basing an index on them solely
may be reasonable under the assumption of normally distributed returns. However, this assumption is often rejected in
settings where the Sharpe ratio is frequently used (e.g. Fama, 1965; Kat and Brooks, 2001). Moreover, a large body of
literature documents the importance of higher-order moments for investment decisions (e.g. Kraus and Litzenberger,
1976; Kane, 1982; Harvey and Siddique, 2000; Barro, 2006; Gabaix, 2008). This feature makes the Sharpe ratio prone to
manipulation by selling upside potential, thus creating heavy left tails (Goetzmann et al., 2007).
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that it may be more favorable than the Sharpe ratio in an empirical setting. Although this index is
increasing with respect to first- and second-order stochastic dominance, it is not homogeneous of
degree zero (i.e., 1{QASpλgq ‰ 1{QASpgq). This property is normatively undesirable because for any
λ ą 0 and any excess return g, the excess returns g and λg allow the agent access to the exact same set
of distributions over outcomes (through scaling the investment in the risky asset by 1{λ).22 Since QAS

satisfies weak monotonicity and weak continuity Corollary 1, this also implies that the inverse AS-
riskiness measure of performance is not monotonic with respect to first-order stochastic dominance
in the presence of a risk-free asset.

Return-to-AS-riskiness. Aumann and Serrano (2008) and Homm and Pigorsch (2012a) propose a
different index of performance: the expected net return divided by AS-riskiness. Formally,

PASpr ´ r f q :“
Err ´ r f s

QASpr ´ r f q
.

This index is not derived from first principles. Instead, it is motivated by a “reward-to-risk” reasoning
where AS-riskiness takes the place of σ in the Sharpe ratio.

Like the generalized Sharpe ratio, the return-to-AS-riskiness index is ordinally equivalent to the
Sharpe ratio on the domain of normal gambles (Aumann and Serrano, 2008; Schulze, 2014). Propo-
sition A.1 shows that it is also monotonic with respect to stochastic dominance in the presence of a
risk-free asset. However, Example A.1 shows that it is not quasiconcave.23

22This property makes the inverse AS-riskiness index prone to the manipulation of bundling the risky asset with the risk-
free asset.

23As a result, the return-to-AS-riskiness index is subject to the manipulation of telling investors that their funds will be
(randomly) invested in one of two portfolios. For other critiques of the mean–AS-riskiness approach, see Chew and Sagi
(2022).
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E Omitted Proofs

E.1 Proofs Omitted from Section 3.3 (Investment Cashflows)

Lemma A.1. If rip¨q ě rjp¨q and i accepts the investment cashflow c ”

´

ψ, psn, tnq
N
n“1

¯

at time t, then so does
j. Furthermore, if rip¨q ą rjp¨q then NPVpc, i, tq ă NPVpc, j, tq.

Proof. First, note that

NPVpc, i, tq “ ´ψ `

N
ÿ

n“1

e
´

t`tn
ş

t
ripzqdz

sn,

and that

NPVpc, j, tq “ ´ψ `

N
ÿ

n“1

e
´

t`tn
ş

t
rjpzqdz

sn “ ´ψ `

N
ÿ

n“1

e
´

t`tn
ş

t
ripzqdz

¨ e
´

t`tn
ş

t
rjpzq´ripzqdz

sn.

Hence,

NPVpc, j, tq ´ NPVpc, i, tq “

N
ÿ

n“1

e
´

t`tn
ş

t
ripzqdz

sn ¨

¨

˝e
´

t`tn
ş

t
rjpzq´ripzqdz

´ 1

˛

‚

The first part of the lemma follows since, for each n,

e
´

t`tn
ş

t
ripzqdz

sn ě 0 and e
´

t`tn
ş

t
rjpzq´ripzqdz

ě 1.

The second part of the lemma follows since the inequalities are strict in that case.

Lemma A.2. For any investment cashflow, c ”

´

ψ, psn, tnq
N
n“1

¯

, there exists a unique positive number α˚pcq

such that

´ψ `

N
ÿ

n“1

e´α˚pcqtn sn “ 0.

Furthermore, if r̃p¨q ą α˚pcq ą r̂p¨q, then at each t, the agent r̃ accepts c and the agent r̂ rejects it.

Lemma A.2 generalizes the result of Norstrøm (1972) who had shown that investment cashflows
have a unique positive IRR in the discrete setting.

Proof. Define the function

f pαq :“ ´ψ `

N
ÿ

n“1

e´αtn sn.

The function f p¨q is continuous, and satisfies f p0q ą 0 and f pαq ă 0 for large values of α. Hence, it
has a solution by the intermediate value theorem. Lemma A.1 implies that the solution is unique, as
well as the second part of the Lemma.

E.2 Proofs Omitted from Appendix A.4 (Multiplicative Gambles)

Lemma A.3. r P M ðñ logp1 ` rq P G.
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Proof. In one direction, r P M ñ Erlogp1 ` rqs ą 0. Hence, logp1 ` rq is well defined (finite) for any
possible realization. Additionally, r P M ñ r P G, thus r it assumes a negative value with positive
probability and therefore so does logp1 ` rq. To summarize, if r P M, then logp1 ` rq is finite-valued,
has positive expectation, and takes a negative value with positive probability, hence logp1 ` rq P G

In the other direction, if logp1 ` rq P G we have that logp1 ` rq takes a negative value with positive
probability and therefore so does r. In addition, we have E rlogp1 ` rqs ą 0. By Jensen’s inequality,
this implies that Errs ą 0. Hence, r P M.

Lemma A.4. For any r P M there is a unique positive number αprq such that E
”

p1 ` rq
´ 1

αprq

ı

“ 1. Further-
more, if r corresponds to the transaction pµ, xq and r1 P M corresponds to pµ1, xq then αprq ą αpr1q if and only
if µ1 ą µ. Additionally, for any c ą 0 there exists r P M with αprq “ c.

Proof. Note that for every r P M and α ą 0, we have E
”

p1 ` rq´ 1
α

ı

“ E
”

exp
´

´
logp1`rq

α

¯ı

. Conse-
quentially, Lemma A.3 and Theorem A in Aumann and Serrano (2008) imply that the unique positive
solution for the equation is QSprq “ QAS plogp1 ` rqq. The monotonicity of QS therefore follows from
the monotonicity of QAS with respect to first-order stochastic dominance, and that QS has a full sup-
port is inherited from QAS having this property.

E.3 Proofs Omitted from Section 4

Lemma A.5. For every utility function u and every w, 1{R0
QAS pu, wq “ 1{S0

QAS pu, wq “ ρupwq.

Proof. First, observe that if u and v are two utility functions and there exists an interval I Ď R such
that ρupzq ě ρvpzq for every z P I, then for every wealth level w and lottery g such that w ` g Ă I, if
g is rejected by v at w it is also rejected by u for the same wealth level. Put differently, if g is accepted
by u at w it is also accepted by v at the same wealth level. The reason is that the condition implies
that in the domain I, u is a concave transformation of v (Pratt, 1964), hence by Jensen’s inequality
upwq ď E ru pw ` gqs implies that vpwq ď E rv pw ` gqs.

Next, recall that a constant absolute risk aversion (CARA) utility function with ARA coefficient of α

rejects all gambles with AS-riskiness greater than 1
α and accepts all gambles with AS-riskiness smaller

than 1
α (Aumann and Serrano, 2008). Additionally, since u1p¨q ą 0, we have that ρup¨q is continuous.

Specifically,

@ δ ą 0 D ε ą 0 s.t x P pw ´ ε, w ` εq ñ ρupxq P pρupwq ´ δ, ρupwq ` δq . (2)

Hence, for any δ ă ρupwq, there exists an ε ą 0 such that for any ε1 P p´ε, εq we have that ρupw ` ε1q P

pρupwq ´ δ, ρupwq ` δq and thus Rε
Qpu, wq ď 1{pρupwq ´ δq and Sε

Qpu, wq ě 1{pρupwq ` δq, where I use
the observation made in the first paragraph to compare u to the CARA utility functions with ARA of
ρupwq ` δ and ρupwq ´ δ.

Lemma A.6. For every agent i and time t, 1{R0
QD pu, wq “ 1{S0

QD pu, wq “ riptq.

Proof of Lemma A.6. Consider a cashflow c P Cε with α˚pcq “ l. By Lemma A.1, it is accepted by a CDR
agent with discousting rate l ´ δ, and rejected by a CDR agent with l ` δ. Since discounting functions
are continuous, by the same “sandwiching” argument used in Lemma A.5, this implies that the local
aversion to QD of an agent i at time t coincides with riptq.
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E.4 Proofs Omitted from Appendix B

Let α˚
u,wpgq denote the optimal level of exposure to the risky asset of agent u with wealth w.

Lemma A.7. For any u and w, for any δ ą 0 there exists ε ą 0 such that for any pψ, gq P Rε,

Pr
!

w ´ ψ ` α˚
u,w´ψpgqg P pw ´ δ, w ` δq

)

“ 1.

Proof. Fix u and w, for any δ ą 0. Denote m :“ minw1Prw´1,w`1s ρupw1q. Since ρu is continuous and
positive, we have m ą 0.

Let ε1 ă mint1{2, m{2u, and let pψ, gq P Rε1 . Then

QASp
1
2

gq “
1
2

QASpgq ě 1{m

and so a CARA-m agent rejects the additive gamble 1
2 g. By Jensen’s inequality, so does u at w ´

ψ. Since u is strictly concave, this implies that α˚
u,w´ψpgq ă 1{2. To complete the proof, set ε ă

mintε1, δ{2u, guaranteeing that ψ is lower than δ{2 and that the greatest loss from α˚
u,w´ψpgqg is lower

than 1{2 ˆ δ{2.

Lemma A.8. For every u and w, RQNV pu, wq “ SQNV pu, wq “ ρupwq. Furthermore, for every v and w1, u at
w has at least as much taste for QNV-informativeness as v at w1 if and only if ρupwq ď ρvpw1q.

Proof. The proof is similar to the proof of Lemma A.5. Consider a sequence of transactions

!

an “ pψn, αnq P A 1
n

)8

n“1

such that all of them are all accepted by u at w.

Step 1. I show that limnÑ8 ψn “ 0. Assume by way of contradiction that there is a sub-sequence
of such transactions where prices do not converge to 0. Without loss of generality an “ pψn, αnq,
and limnÑ8ψn “ ψ̂ P p0, 8s. Let ψ :“ min

␣

ψ̂, 1
(

. Then, there exits N such that for all n ą N the

transactions a1
n :“

´

ψ
2 , αn

¯

are accepted. By Lemma 4 of Cabrales et al. (2017), as 1{n approaches 0,

so does the scale of the optimal investment, }bn}8. Therefore, for 1{n small enough, w ´
ψ
2 ` bn

k is in
a small environment of w ´

ψ
2 ă w for all k, a contradiction.

Step 2. An implication of the discussion in Step 1 is that for any δ ą 0, for 1{n small enough,
w ´ ψn ` bn

k is in a δ-environment of w for all k. Since ρupwq is continuous, for every γ ą 0 there exists
a δ ą 0 small enough such that z P pw ´ δ, w ` δq implies |ρupzq ´ ρupwq| ă γ.

Consider the CARA agents with absolute risk aversion coefficients ρupwq ` γ and ρupwq ´ γ ą 0.
For a small enough environment of w, I,

ρupwq ´ γ ď inf
zPI

ρupzq ď sup
zPI

ρupzq ď ρupwq ` γ.

Since QNV has Property LC, and since CARA agents accept a transaction if and only if its QNV-
informativeness is higher than their ARA, we have RQNV pu, wq ě ρupwq and SQNV pu, wq ď ρupwq.
Furthermore, since QNV has Property F, we have SQNV pu, wq ě RQNV pu, wq. Altogether we get that
SQNV pu, wq “ ρupwq “ RQNV pu, wq, as required.
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E.5 Proofs Omitted from Appendix C

Proof of Corollary 14. By Theorem 3 local consistency and the generalized Samuelson property imply
weak duality, so, by Corollary 7, QGS and its continuous increasing transformations are the only
possible candidates. By Corollary 7, all of these indices satisfy monotonicity in fee and continuity in
fee. Local consistency of QGS was established in Appendix B.1, and this property is preserved under
continuous increasing transformations. Since CARA agents with ARA of c accept a transaction if and
only if its QGS-performance is higher than c, the findings of Appendix B.1 imply that the requirements
of the generalized Samuelson property apply to agents that have lower (higher) ARA than c, and this
follows from Jensen’s inequality (since higher types can always mimic the portfolios of lower types).
Finally, this property is also preserved under continuous increasing transformations.

Proof of Corollary 15. By Theorem 3 local consistency and the generalized Samuelson property imply
weak duality, so, by Corollary 8, QNV and its continuous increasing transformations are the only
possible candidates. By Corollary 8, all of these indices satisfy monotonicity in fee and continuity
in fee. Local consistency of QNV was established in Appendix B.2, and this property is preserved
under continuous increasing transformations. Since CARA agents with ARA of c accept a transaction
if and only if its QNV-performance is higher than c, the findings of Appendix B.2 imply that the
requirements of the generalized Samuelson property apply to agents that have lower (higher) ARA
than c, and this follows from Jensen’s inequality (since higher types can always mimic the portfolios
of lower types). Finally, this property is also preserved under continuous increasing transformations.

Proof of Corollary 16. By Theorem 3 local consistency and the generalized Samuelson property imply
weak duality, so, by Corollary 9, QGM and its continuous increasing transformations are the only
possible candidates. By Corollary 9, all of these indices satisfy weak monotonicity and weak continu-
ity. Local consistency of QGM was established in Appendix B.3, and this property is preserved under
continuous increasing transformations. Since CARA agents with ARA of 1{c accept a menu if and
only if its GM-riskiness is lower than c, the findings of Appendix B.3 imply that the requirements of
the generalized Samuelson property apply to agents that have lower (higher) ARA than 1{c, and this
follows from Jensen’s inequality (since higher types can always mimic the gamble choices of lower
types). Finally, this property is also preserved under continuous increasing transformations.

Proof of Corollary 17. By Theorem 3 local consistency and the generalized Samuelson property imply
weak duality, so, by Corollary 10, QS and its continuous increasing transformations are the only pos-
sible candidates. By Corollary 10, all of these indices satisfy weak monotonicity and weak continuity.
Local consistency of QS was established in Appendix B.4, and this property is preserved under con-
tinuous increasing transformations. Since CRRA agents with RRA of 1{c accept gambles if and only
if their QS-riskiness is lower than c, the findings of Appendix B.4 imply that the requirements of the
generalized Samuelson property apply to agents that have lower (higher) RRA than 1{c, and this
follows from Jensen’s inequality. Finally, this property is also preserved under continuous increasing
transformations.
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E.6 Proofs Omitted from Appendix D

Proposition A.1. PAS is monotonic with respect to first and second-order stochastic dominance in the presence
of risk-free asset.

Proof. Note that r1 dominates r2 in the presence of r f if and only if r1 ´ r f dominates r2 ´ r f in the
presence of the a risk-free asset baring interest of rate of 0, which, in turn, holds if and only if pr1 ´

r f q{ Err1 ´ r f s dominates pr2 ´ r f q{ Err2 ´ r f s in the presence of the risk-free rate of 0. Hence, it is
without loss of generality to concentrate on the case that r f “ 0 and Err1s “ Err2s “ 1.

In this case, if r1 dominates r2 in the presence of the risk-free asset, then there exist α, β ą 0 such
that αr1 stochastically dominates βr2. Hence, by monotonicity of QAS with respect to first (second)
order stochastic dominance, we have QASpαr1q ă QASpβr2q. By stochastic dominance we also have
E rαr1s ě E rβr2s. Altogether, these inequalities imply that

PAS
0 pr1q “

E rr1s

QASpr1q
“

E rαr1s

QASpαr1q
ą

E rβr2s

QASpβr2q
“

E rr2s

QASpr2q
“ PAS

0 pr2q

as required, where the first equality on each side is by definition, the second equality uses homogene-
ity of degree 1 of QAS and of the expectation operator, and the inequality follows by the numerator
being weakly higher and the denominator being strictly lower.

Example A.1. Denote

g “ r´4.0101, 0.1429; ´0.3789, 0.2715; 3.2521, 0.2504; 6.8832, 0.0545; 10.5144, 0.2807s

and

g1 “ r´7.251, 0.0222; ´0.732, 0.0286; 5.7871, 0.0583; 12.3063, 0.0842; 18.825, 0.1266; 0, 0.6801s.

We have that PASpgq ă 1.239 and PASpg1q ă 1.239.
Let g2 denote an excess return that is distributed according to g with probability half and otherwise accord-

ing to g1, independently of g and g1. Formally,

g2 “ r´4.0101, 0.5 ¨ 0.1429; ´0.3789, 0.5 ¨ 0.2715; 3.2521, 0.5 ¨ 0.2504; 6.8832, 0.5 ¨ 0.0545; 10.5144, 0.5 ¨ 0.2807;

´7.251, 0.5 ¨ 0.0222; ´0.732, 0.5 ¨ 0.0286; 5.7871, 0.5 ¨ 0.0583; 12.3063, 0.5 ¨ 0.0842; 18.825, 0.5 ¨ 0.1266; 0, 0.5 ¨ 0.6801s.

We have PASpg2q ą 1.24.
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