
The Large Core of College Admission Markets:
Theory and Evidence∗

Péter Biró Avinatan Hassidim Assaf Romm Ran I. Shorrer
Sándor Sóvágó†

Abstract

We study stable allocations in college admissions markets where students can attend
the same college under different financial terms. The deferred acceptance algorithm
identifies a stable allocation where funding is allocated based on merit. While merit-
based stable allocations assign the same students to college, non-merit-based stable allo-
cations may differ in the number of students assigned to college. In large markets, this
possibility requires heterogeneity in applicants’ sensitivity to financial terms. In Hun-
gary, where such heterogeneity is present, a non-merit-based stable allocation would
increase the number of assigned applicants by 1.9%, and affect 8.3% of the applicants rel-
ative to any merit-based stable allocation. These findings contrast sharply with findings
from the matching (without contracts) literature.
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1 Introduction

In recent years, a growing number of students are being assigned to schools through cen-
tralized clearinghouses. The success of such clearinghouses crucially relies on the use of a
stable matching mechanism (Roth and Xing, 1994; Roth, 2002).1 The matching market de-
sign literature finds that a designer who wishes to implement a stable allocation has limited
scope for further design. First, the rural hospital theorem determines that the same positions
are filled in all stable allocations (Roth, 1984a, 1986). Second, the set of stable allocations has
the consensus property: all students prefer the outcome of the student-proposing deferred
acceptance mechanism (henceforth SP-DA) to any other stable allocation (Gale and Shapley,
1962; Roth, 1984b). Third, empirical and theoretical studies suggest that all students, save
for a handful, receive the same assignment in all stable allocations (e.g., Ashlagi et al., 2017;
Azevedo and Leshno, 2016; Immorlica and Mahdian, 2005; Kojima and Pathak, 2009; Roth
and Peranson, 1999). This last finding implies that schools have limited incentive to collect
information and to misreport their preferences (Demange et al., 1987).

The above-mentioned results apply to two-sided matching markets (men and women,
students and schools, etc.) where agents’ preferences are over potential partners from the
other side. However, the environments studied and designed by economists are often more
complex. For example, college applicants care not only about the study program they are as-
signed to, but also about the level of financial aid they receive. In this paper, we ask whether
the set of stable allocations continues to be small in these more complex environments.

We study Hungarian college admissions, where colleges offer multiple levels of financial
aid. In this environment, we show theoretically and empirically that it is no longer true that
almost all students receive the same assignment in all stable allocations. Furthermore, dif-
ferent stable allocations differ in the set of positions filled and in the composition of assigned
students, and there is no consensus among students on the most-preferred stable allocation.

To gain intuition, we provide a simple example. The example is a minimal instance of
our model of Hungarian college admissions.2 We accompany the verbal description with
the notation of our model, which we introduce in Section 3.

Example 1. There are two students, S = {r, p}, and one college, C = {c}. The college has
two seats, but only one of these seats is state-funded (formally, q0

c = 1, q1
c = 1). The college

finds the rich student, r, more attractive than the poor student, p (formally, r �c p). The
college prefers to accept the most attractive students, and to fill its capacity. The rest of the
college’s preferences over acceptable allocations are fully described by

{(r, c, 0), (p, c, 1)} �c {(r, c, 1), (p, c, 0)} �c {(r, c, 0)} �c

{(r, c, 1)} �c {(p, c, 0)} �c {(p, c, 1)},

where 1 (0) indicates admission with (without) state funding.

1Stability is also useful for predicting behavior in decentralized matching markets (e.g., Banerjee et al., 2013).
2Our model captures the structure of preferences observed in other centralized college admissions markets,
including Turkey, Australia, Israel, Ukraine, Russia, and the US.
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The rich student, r, prefers to receive state funding, but she is willing to attend the college
even if she does not get state funding. Formally, r’s preferences are (r, c, 1) �r (r, c, 0) �r ∅.
By contrast, the poor student, p, is only interested in admission with state funding. Thus,
p’s preferences are summarized by (p, c, 1) �p ∅.

There are two stable allocations in this market: the result of SP-DA, {(r, c, 1)}, where
funding is allocated based on merit; and {(r, c, 0), (p, c, 1)}, where more positions are filled
and funding is not allocated based on merit. We note that the only allocation that both
students weakly prefer to both of these stable allocations has both students receiving state
funding, but this allocation is not acceptable to the college. Therefore, there is no consensus
among students on a student-optimal stable allocation.

Can we expect stable allocations to be meaningfully different in realistically-sized mar-
kets? To answer this question, we develop a large market model of Hungarian college ad-
missions markets and study the assumptions required from this model to guarantee that the
set of stable allocations is large. Our main theoretical result (Theorem 3) is that the set of
stable allocations is large when students are heterogeneous in their sensitivity to financial
terms (like the rich student and the poor student in Example 1). By contrast, when students
are not heterogeneous in their sensitivity to financial terms—that is, when all students find
both contracts with the same college to be nearly perfect substitutes or when all students
do not find them to be close substitutes—then the set of stable allocations is small. We also
show that both variants of DA allocate funding based on merit (Theorem 1) and that the set
of merit-based allocations is small.

The proof of Theorem 3 as well as our empirical analysis rely on the preference flip algo-
rithm, a novel stable algorithm. To gain intuition on how our algorithm works, we revisit
Example 1. If each type of seat was controlled separately, then competition between the
seats would rule out the stable allocation in which both students are assigned. However,
since one college controls both seats, it can make sure that they do not compete with each
other. Given a stable allocation, colleges have local market power over students who are ad-
mitted with state funding, but who have no outside option (a contract at another college or
being unassigned) that they prefer to the self-funded contract with the same college. An ex-
treme case is when students rank the state-funded and self-funded contracts with the same
college consecutively, like the rich student in our example. In this case, colleges can exer-
cise market power by refusing to accept such students to state-funded seats, thus freeing
up the state-funded seats which can then be used to recruit price-sensitive students like the
poor student in our example.3 The preference flip algorithm can be interpreted as allowing
colleges to exercise their local market power.

We use the preference flip algorithm for exploring the size of the set of stable allocations.
However, implementing it will require more than merely changing the matching algorithm.
Specifically, the preference flip algorithm requires colleges to offer financial aid selectively
based on students’ sensitivity to financial terms, giving students an incentive to misrep-
resent their sensitivity to financial terms. Still, colleges can use hard information to infer
students’ sensitivity to financial terms. For example, in the American context, such informa-
tion is available to colleges through the Free Application for Federal Student Aid (FAFSA)
3This argument is not precise, since by recruiting new students the college may change the outside options
available to its other students. Our analysis takes this challenge into account.
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form. In addition, many American colleges hire companies to personalize their financial aid
packages using large propitiatory datasets (Lieber, 2021; Caniglia and Porterfield, forthcom-
ing).

We next assess the size of the set of stable allocations empirically using administrative
data from the Hungarian college admissions system. We document substantial heterogene-
ity in applicants’ sensitivity to financial terms. In line with our large market analysis, both
variants of DA result in essentially identical allocations, while the outcome of the prefer-
ence flip algorithm differs for more than 9,000 applicants (approximately 8 percent of the
applicants), with slightly more winners than losers. More importantly, the preference flip
algorithm increases the number of applicants assigned to college by 1.9 percent (approxi-
mately 1,500) with approximately 2,100 unassigned applicants gaining admission and ap-
proximately 600 losing their place.4 Since programs in the capital—which are generally
prestigious and highly demanded—typically fill all their positions both under DA and un-
der our alternative, the gains in enrollment mostly accrue to colleges in the periphery.

We analyze the characteristics of those who benefit and lose from the preference flip algo-
rithm. Applicants who prefer the outcome of the non-merit-based preference flip algorithm
to the outcome of DA come from lower socioeconomic background relative to applicants
who prefer the outcome of DA. The preference flip algorithm also increases geographic mo-
bility by increasing the number of applicants assigned to a college outside their county of
residence.

Our data does not include hard information that would allow inferring applicants’ sen-
sitivity to financial terms. For this reason, our main analysis uses an algorithm which only
applies local market power over students who are extremely insensitive to financial aid (as
revealed by their preference reports). Had hard information been collected, one can argue
that these students could plausibly be identified. In Appendix D, we expand the analysis
in two directions. First, we assess the consequences of being able to detect only a subset
of these students. Second, we analyze algorithms that apply market power more broadly.
We find that the effectiveness of our approach increases with the quality of information on
students’ sensitivity to funding.

Our findings speak to the broader research question of how to design college admis-
sions processes in the presence of constraints on additional resources such as financial aid,
dormitories, etc. Our analysis does not consider many policy levers that are available to
policymakers. For example, we fix the number of scholarships the government allocates to
each program, we keep scholarships indivisible, and we require that admission and finan-
cial terms be determined simultaneously based on preference reports and that the outcome
is stable. Even under these restrictions, we find a substantial scope for market design to
affect the outcome.

The remainder of the paper is organized as follows. Following a short review of related
literature, Section 2 describes college admissions in Hungary. Section 3 introduces a formal
4Having found that the set of stable allocations could be large and in the absence of the consensus property,
a natural objective is to identify stable allocations that are optimal according to some criterion. However,
we show that achieving this objective may not be feasible with current computing technology. Specifically,
Theorem 2 shows that finding the largest stable allocation is NP-hard. This means that finding an efficient
(polynomial-time) algorithm for solving this problem will establish that P = NP (which is widely believed to
be false).
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model of Hungarian college admissions. Section 4 explores the set of stable allocations. Sec-
tion 5 includes the large market analysis. Section 6 reviews the empirical findings. Section 7
concludes. Proofs are relegated to the appendix throughout.

1.1 Related Literature
Empirical and theoretical studies show that the set of stable allocations is typically small
(Ashlagi et al., 2017; Azevedo and Leshno, 2016; Immorlica and Mahdian, 2005; Kojima and
Pathak, 2009; Roth and Peranson, 1999; Storms, 2013). Prior to these studies, a large portion
of the literature on the theory of two-sided matching markets was motivated by the potential
multiplicity of stable allocations. Examples include studies of the structure of the set of
stable allocations (Knuth, 1976), of fair stable allocations (Klaus and Klijn, 2006; Schwarz
and Yenmez, 2011), and of incentives (Ehlers and Massó, 2007; Roth, 1982; Sönmez, 1999).
The rural hospital theorem (Roth, 1984a, 1986) refuted suggestions that changing the way
the National Residency Match Program treats medical graduates and hospitals may change
the number of doctors assigned to rural hospitals.

Truthful reporting to the student-proposing DA mechanism is a weakly dominant strat-
egy for students, and there is no stable matching mechanism that makes truthful reporting
dominant for both sides of the market (Dubins and Freedman, 1981; Roth, 1982). Demange
et al. (1987) show that schools’ incentives to manipulate SP-DA are intimately related to the
multiplicity of stable allocations.5 Several studies show that in large markets it is safe for
schools to report their true preferences to SP-DA (Ashlagi et al., 2017; Azevedo and Budish,
2018; Immorlica and Mahdian, 2005; Kojima and Pathak, 2009; Lee, 2017).

Complex two-sided matching markets are studied in the matching-with-contracts lit-
erature (Hatfield and Milgrom, 2005). Much of this literature focuses on identifying con-
ditions under which SP-DA remains stable and strategy-proof for students. Examples in-
clude Fleiner (2003), Hatfield and Kojima (2010), Hatfield and Milgrom (2005), Hatfield et al.
(2020), Kelso and Crawford (1982), and Roth (1984b).6 Most closely related is Hatfield and
Kominers (2015).

Hassidim et al. (2017a) use the results of Hatfield and Kominers (2015) to show that SP-
DA is stable and strategy-proof in more general college admissions environments. They
show that different stable allocations may have different cardinality. The proofs in our pa-
per rely on a different construction, which allows us to derive further results. We contribute
to Hatfield and Kominers (2015) and Hatfield et al. (2020) in several ways. First, we identify
a real-life market design application where colleges’ choice functions satisfy the hidden sub-
stitutes condition but fall outside the (unilateral) substitutes domain.7 Second, we provide

5Numerous studies have analyzed the optimal behavior of schools when the SP-DA mechanism is in place
(e.g., Coles and Shorrer, 2014; Ehlers, 2004; Konishi and Ünver, 2006; Roth and Rothblum, 1999; Sönmez,
1997).

6Applications related to college admissions include Abizada (2016), Afacan (2020), Aygün and Bó (2016),
Aygün and Turhan (2017), Nei and Pakzad-Hurson (2016), Pakzad-Hurson (2014), Westkamp (2013), and
Yenmez (2018).

7To see that college preferences are not (unilaterally) substitutable (Hatfield and Kojima, 2010), note that in
Example 1, college c rejects (p, c, 1) from the menu {(p, c, 1), (r, c, 1)} but does not reject this contract from
the larger menu {(p, c, 1), (r, c, 1), (r, c, 0)}. Colleges’ preferences also do not meet any other condition that
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a large market analysis. Third, we provide a complete characterization of the set of stable
allocations in the domain of Hungarian college admissions markets.8 Fourth, we show that
different stable allocations may have different cardinality in this more restrictive domain,
and that stable allocations in this domain may result in fewer assigned students relative to
SP-DA. Fifth, we consider the practical aspect of computation.

Large market models have been studied extensively in the market design literature. Ex-
amples include Ashlagi and Nikzad (2020), Ashlagi et al. (2014, 2019, 2017), Azevedo and
Leshno (2016), Immorlica et al. (2020), Kojima and Pathak (2009), Kojima et al. (2013), Lee
(2017), and Leshno and Lo (2020). Most closely related are Immorlica and Mahdian (2005,
2015) and Rheingans-Yoo (2020) who show that even in the absence of contracts, certain
regularities in preferences can lead to a large set of stable allocations. These papers study
settings where the rural hospital theorem and the consensus property apply. By contrast,
we study markets with contracts and show that different stable allocations may differ in the
number of students assigned to college and where the consensus property does not hold.

Our paper is related to studies of reserve design (Aygün and Turhan, 2017; Dur et al.,
2018; Aygün and Turhan, 2020; Pathak et al., 2020). In the context of school choice, a key
observation in this literature is that students may be indifferent between different seats in the
same school, but some seats are reserved for certain groups of students. This implies, using
our terminology, that schools have local market power over students from these groups. The
reserve-design literature focuses on the effect of different ways the mechanism can break
students’ preference ties in order to form strict student rankings of contracts, while keeping
the priorities at each seat fixed. By contrast, we study an environment where students have
strict preferences over all contracts.

Our results shed light on the policy debate on market power in higher education (see,
e.g., Hoxby, 2000). This literature gained traction after the U.S. Department of Justice brought
an antitrust case against a group of elite colleges for sharing prospective students’ financial
information and coordinating their financial aid policy. MIT contested the charges, claim-
ing that this practice prevents bidding wars over the best students and thus frees up funds
to support needy students, and that MIT does not profit financially from this practice (De-
Palma, 1992). In 1994, Congress passed the Improving America’s Schools Act, whose Sec-
tion 568 permits some coordination and the sharing of information between institutions
with a need-blind admissions policy. Our findings provide support to MIT’s arguments. We
show that even in the absence of a motive to increase profit, colleges have an incentive to
apply market power in order to improve the quality of their incoming cohorts, and that the
consequences for students are heterogeneous. On average, needy students gain, in part at
the expense of more wealthy students. Furthermore, information about students’ sensitivity
to financial aid, is necessary to facilitate such behavior.

guarantees the existence of a student-optimal stable allocation (Hassidim et al., 2019).
8The substitutable completions approach of Hatfield and Kominers guarantees existence, but it is not guar-
anteed to identify all stable allocations. Indeed, one can verify that, in Example 1, for any substitutable
completion of the college’s choice function, YSP−DA is the unique allocation that is stable with respect to the
completion.
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2 Background: College Admissions in Hungary

Each year about 80,000 applicants are assigned to undergraduate college programs in Hun-
gary. Applicants are assigned to programs, i.e., a specific major in a specific college.9 The
admissions process has been centralized since 1985. The centralized clearinghouse has been
using variants of DA to assign applicants to colleges since 1997.

Historically, higher education in Hungary was free. However, in recent years, the gov-
ernment has capped the number of state-funded (free) seats, and programs are allowed to
offer admission to self-funded (tuition-paying) seats as well.10 To implement this change,
the centralized clearinghouse started requesting applicants to submit a rank-order list (ROL)
of alternatives, specifying that the student attends a program under particular financial terms
(e.g., economics in the University of Debrecen with state funding). This flexibility was cru-
cial in order to allow applicants to express their preferences. For example, some applicants
may not be willing or able to afford paying tuition, while others may have a strong prefer-
ence for certain programs, and be less price-sensitive.

Applicants may rank as many alternatives as they wish. Submitting an ROL with three
programs (corresponding to up to six alternatives) only requires paying the fixed application
fee of $50 (9,000HUF). Applicants are required to pay a registration fee of $11 (2,000HUF)
for each additional program in their ROL. Disadvantaged applicants are exempt from these
fees.11

College programs report to the mechanism their capacity (i.e., the maximal number of
applicants they can accept). Admissions priorities in each program are based on a weighted
average of several variables (mainly academic performance in the 11th and 12th grades and
matriculation exam scores, but also credits for disadvantaged and disabled applicants, for
applicants who demonstrate fluency in another language, and for a small number of gifted
applicants). Different study programs may use different weighting schemes (e.g., a com-
puter science program may assign a greater weight to physics grades relative to a psychol-
ogy program).

In 2007, the year we focus on, to accommodate the multiple modes of financing, the
mechanism required that the programs also report the number of state-funded seats they
offered. This took place prior to the beginning of the admissions process.12 The mecha-
nism then created two “auxiliary programs” with capacities corresponding to the number of
state-funded and self-funded seats in the program, and endowed both with the priorities of
the program.13 Finally, student-receiving DA (SR-DA)—i.e., auxiliary-program-proposing

9We focus on admissions to undergraduate programs, which include three types of programs: bachelor’s
degree programs (with a typical study duration of 3 years), combined bachelor–master’s programs (with a
typical study duration of 5 years), and tertiary vocational education (with a typical study duration of 2 years).

10Citizens of the European Economic Area who have not yet graduated from higher education are eligible for
state funding.

11To be eligible for disadvantaged status, an applicant must have a per-capita household income that is lower
than 130 percent of the minimum pension (i.e., lower than approximately $1,500 a year).

12In 2008, Hungarian college admissions adopted a more complex variant of DA (Biró et al., 2010; Shorrer and
Sóvágó, 2018). Although our analysis continues to hold under the new mechanism, we focus on 2007 to
highlight that our results do not rely on the new, unique features.

13This description applies to full-time programs. There was an additional constraint on the total number of
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DA—was used to determine the final assignment.
Table 1 presents information on the alternatives that colleges offered in 2007. The ap-

plicants’ choice set consisted of 3,740 alternatives, corresponding to 2,289 study programs.
The number of study programs that offered both state-funded and self-funded alternatives
was 1,451. Some study programs were available with state-funding exclusively (172), and
other programs—mostly part-time programs—were available with self-funding exclusively
(666). Panel B shows that 93,999 of the 111,685 available seats (84.1 percent) were available
in study programs that offered both state-funded and self-funded alternatives. The over-
whelming majority of the seats that were offered with self-funding exclusively (about 91
percent) were in the form of part-time education.

Table 1: Applicants’ choice set

Total Full-time Part-time
(1) (2) (3)

A. Alternatives
Number of programs 2,289 1,357 932
– state- and self-funded 1,451 1,133 318
– state-funded exclusively 172 158 14
– self-funded exclusively 666 66 600
Number of alternatives 3,740 2,490 1,250

B. Capacities
State-funded and self-funded 93,999 75,197 18,802
– state-funded 47,809 43,084 4,725
– self-funded 46,190 32,113 14,077
State-funded exclusively 917 806 111
Self-funded exclusively 16,769 691 16,078
Total 111,685 76,694 34,991
Notes: The table presents summary statistics of the applicants’
choice set. Panel A presents the number of alternatives by the
financial terms. Panel B displays the number of seats by the
financial terms.

Timeline. The application process proceeds as follows. First, the centralized clearinghouse
publishes a booklet that includes the rules of the college admissions process together with
the list of the alternatives (program–financial terms pairs), and the number of seats available
in each alternative in November. Applicants submit their ROLs in mid-February. In May
and June, applicants take their matriculation exam. Finally, in mid-July, the clearinghouse
notifies applicants about their placement and publishes the priority-score cutoffs for each
alternative, i.e., the minimum priority score that was needed to gain admission.

state-funded seats in each field of study, which was only binding for part-time programs. Additionally,
part-time programs in computer science and engineering use slightly different priorities for state-funded
and self-funded seats (they assign a lower weight to mathematics scores of applicants for self-funded seats
relative to state-funded seats). Our empirical analysis takes this into account (see Appendix E).

7



Financing Colleges. The government funds colleges on a per-student basis, irrespective of
the financial terms. Additionally, colleges collect tuition from self-funded students,14 and re-
ceive additional compensation for state-funded students from the government. Thus, hold-
ing the number of state-funded (self-funded) students constant, colleges’ revenue increases
with each additional admitted self-funded (state-funded) student.

3 A Model of Hungarian College Admissions

We use the many-to-one matching-with-contracts model of Hatfield and Milgrom (2005) to
describe Hungarian college admissions markets. There is a finite set of colleges, C, a finite set of
students, S, and a set of financial terms, T = {0, 1}. A contract is a tuple (s, c, t) ∈ S× C× T
that specifies a student, a college, and financial terms (with t = 1 representing state funding,
and t = 0 representing self funding).

An allocation is a subset Y ⊆ S×C× T. An allocation Y is feasible if no student is included
in more than one contract. Formally, for each student s, |Y ∩ ({s} × C× T)| ≤ 1. Given an
allocation, Y, we let YS denote the set of students involved in some contract in Y. Formally,
YS := {s ∈ S | Y ∩ ({s} × C× T) 6= ∅}. Similarly, YC := {c ∈ C | Y ∩ (S× {c} × T) 6= ∅}.

Students’ preferences Each student, s, has strict preferences over contracts in {s} × C× T
(not all of them are necessarily available) and an outside option which we denote by ∅. We
denote student s’s preference relation by �s. Students’ preferences, therefore, induce weak
preferences over all feasible allocations, where students only consider their own assignment.

Colleges’ preferences Each college, c, has strict preferences, �c, over all feasible alloca-
tions in S× {c} × T.15 These preferences induce weak preferences over all feasible alloca-
tions, where c strictly prefers Y to Y′ if and only if Y ∩ (S× {c} × T) �c Y′ ∩ (S× {c} × T).
The preferences of each college, c, satisfy the following conditions.

First, c is associated with two numbers, q1
c and q0

c , representing a constraint on the num-
ber of students that can be accepted under each of the financial terms. The college c prefers
the empty allocation to all allocations that violate c’s quotas, that is, that assign to c more than
qt

c students under the financial terms t.
Second, c has a complete order over S ∪ {∅}, denoted by �c, representing a ranking

over students. Given an allocation Y ⊆ S × {c} × T (an assignment of students to the
college under some financial terms), if qt

c is not binding then the college prefers to accept
an additional student s under the financial terms t if and only if s �c ∅. Formally, if s /∈
YS and |Y ∩ (S× {c} × {t})| < qt

c, then Y ∪ {(s, c, t)} �c Y iff s �c ∅. Additionally, c
prefers to replace student s who receives the financial terms t with another student s′ who
is not assigned to c (under the same financial terms) if and only if s′ �c s. Formally, for all
Y ⊆ S× {c} × T, if (s, c, t) ∈ Y and s′ /∈ YS, then (Y ∪ {(s′, c, t)}) \ {(s, c, t)} �c Y iff s′ �c s.

Third, so long as quotas are not violated, the composition of the incoming cohort is lex-
icographically more important to the college relative to the way funding is allocated. For-
mally, let Y, Y′ ⊆ S× {c} × T be two feasible allocations that do not violate c’s quotas. Then

14Tuition for a 3-year bachelor’s degree program ranges from $3,280 to $6,560 (600,000–1,200,000HUF).
15None of our results relies on the assumption that colleges’ preferences are strict.
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if YS = Y′S (i.e., Y and Y′ differ only in the identity of the recipients of state funding in c) and
Y �c Y′′ �c Y′ for some Y′′ ⊆ S× {c} × T, it follows that Y′′S = YS.

Discussion of theoretical assumptions We refrain from assuming that students always
prefer to receive state funding for several reasons. First, this generality allows our model to
capture environments where the ranking of alternatives is more ambiguous, such as admis-
sion with and without a dormitory assignment. Second, in practice, some students are not
eligible to receive financial aid and a small fraction of applicants report unusual preferences
(Shorrer and Sóvágó, 2018).

According to our assumptions, subject to quotas, colleges’ preferences depend more on
the size and quality of the incoming cohort than they do on the distribution of funding. This
assumption is not unusual in the literature (e.g., Kim, 2010; Heo, 2017), and is consistent
with preferences of colleges in other markets (e.g., Hassidim et al., 2017b). Our assumptions
rule out redistributive motives. As highlighted by Caniglia and Porterfield (forthcoming),
the presence of such motives will strengthen our arguments.

Our model also abstracts from upper quotas on state-funded seats in part-time programs
in the same field (Biró et al., 2010). We note that all of our theoretical results generalize to
this more complex environment. The upper quotas create links between part-time programs,
making their choice functions more complex. The added complexity creates further oppor-
tunities to apply local market power (e.g., transfer students between part-time programs).
We choose not to take advantage of this feature, which is specific to the Hungarian market,
in our empirical analysis.

The special case of our model where min{q0
c , q1

c} = 0 for all c corresponds to two-sided
many-to-one matching (without contracts) markets with responsive preferences (Roth, 1985). Given
such a market, we often refer to college c’s only positive quota as c’s quota and to allocations
as matchings.

Individual rationality The preferences of each college c induce a choice function Chc :
2S×C×T → 2S×{c}×T, that identifies the feasible subset of Y ∩ (S× {c} × T) most preferred
by c. Similarly, for students, Chs : 2S×C×T → 2{s}×C×T chooses the most preferred accept-
able contract involving s (if one exists). An allocation Y is individually rational if all agents
choose all the contracts in which they are involved, that is

⋃
c∈C Chc (Y) =

⋃
s∈S Chs (Y) = Y.

Individually rational allocations cannot violate quotas since colleges prefer the empty set to
allocations that violate their quotas. Furthermore, they are feasible since students never
choose more than one contract (|Chs (·)| ≤ 1 for all s).

Stability An allocation Y is blocked (through Z) if there exists a college, c, and a non-empty
set Z ⊆ (S× {c} × T) \ Y such that Z ⊆ Chc(Y ∪ Z) and Z ⊆ ∪s∈S Chs (Y ∪ Z). An alloca-
tion is stable if it is individually rational and not blocked. In words, an allocation is stable if
no coalition of agents can achieve a weak improvement on its own.

The following proposition provides a complete characterization of stable allocations.

Proposition 1. An allocation Y is stable if and only if all of the following hold:

1. Y is individually rational.

9



2. Y is not blocked through a singleton {(s, c, t)}.

3. Y is not blocked through a change in the financial terms of one student, and a contract with a
new student using the freed-up space. Formally, for all (s, c, 1− t) /∈ Y and (s′, c, t) ∈ Y, Y is
not blocked through {(s′, c, 1− t) , (s, c, t)}.

4. Y is not blocked through a change in financial terms that keeps students in the same college (but
under different financial terms). Formally, Y is not blocked through Z such that (s, c, t) ∈ Z
implies (s′, c, 1− t) ∈ Y.

We note that Conditions 3 and 4 of Proposition 1 can only be violated in the presence
of multiple contractual terms. Therefore, in two-sided many-to-one matching (without-
contracts, i.e., when |T| = 1) markets with responsive preferences the proposition reduces
to the statement that a matching is stable if and only if it is individually rational and not
blocked by a student–college pair.

Certainly stable allocations Allocation Y is certainly stable if Conditions 1–3 of Proposi-
tion 1 hold, as well as the following condition:

4’. For each (s, c, t) ∈ Y, if (s, c, 1− t) �s (s, c, t) then |Y ∩ (S× {c} × {1− t})| = q1−t
c and

(s′, c, 1− t) �s′ (s′, c, t) for all (s′, c, 1− t) ∈ Y.

When Conditions 1-3 of Proposition 1 hold, Condition 4’ implies Condition 4 of Proposi-
tion 1. Therefore, a certainly stable allocation is also stable.16 The notion of certain stability
proves useful in our empirical analysis because it only relies on quotas and rankings (i.e., q0

c ,
q1

c , and�c) but not on the full description of �c, and because there are fewer conditions to
verify (each condition refers to no more than three agents).

Comparing stable allocations When comparing the stable allocation Y′ to the stable allo-
cation Y, the set of winners, W(Y′, Y), consists of all students that prefer their assignment
under Y′. The set of winners comprises of the following subsets:

1. The set of newly assigned students, N(Y′, Y), consists of students who are assigned
under Y′ but not under Y.

2. The set of funding winners, FW(Y′, Y), consists of students who are assigned to the same
college in both allocations, but prefer their financial terms under Y′. If all students
prefer to be funded, students in FW(Y′, Y) receive state-funding under Y′, but not
under Y.

3. The set of upwards transfers UT(Y′, Y)) := W(Y′, Y) \ (N(Y′, Y) ∪ FW(Y′, Y)) consists
of winners who get assigned to a new, preferred college.

We define the set of losers, and its subsets, newly unassigned, funding losers, and downward
transfers, symmetrically.

16The converse is not true because students may want to swap their financial terms in the same college in a
stable allocation, as long as the college prefers that they do not.
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Merit-based allocations We say that an allocation Y allocates funding based on merit if s
weakly prefers (s, c, t) to (s, c, t′) whenever (s, c, t) and (s′, c, t′) belong to Y and s �c s′.
When Y allocates funding based on merit, within each college, c, higher-ranked students
according to �c do not envy the financial terms of lower-ranked students who are also
assigned to c. Specifically, if all students prefer to be funded, the recipients of funding in
each college are all ranked higher than all self-funded students. A stable allocation that
allocates funding based on merit is a merit-based stable allocation.17

Related matching markets The related (two-sided) matching market (without contracts) is an
auxiliary market where each program-funding-level pair plays the role of an individual
college. This mathematical object often simplifies our exposition and analysis. Formally,
given a Hungarian college admissions market,

〈
S, C,

{
�c,�c, q0

c , q1
c
}

c∈C , {�s}s∈S

〉
, the re-

lated matching market comprises the set of auxiliary colleges Ĉ ≡ C× T with responsive pref-
erences, where (c, t) ∈ Ĉ has quota qt

c and uses the ranking �c, and the set of students S
with preferences {�̂s}s∈S, such that for every s ∈ S, c ∈ C, and t ∈ T, (c, t)�̂s(c′, t′) if and
only if (s, c, t) �s (s, c′, t′). A feasible allocation Y and a matching (in the related matching
market) are corresponding if s matched with (c, t) if and only if (s, c, t) ∈ Y.

Deferred acceptance Student-proposing deferred acceptance takes a profile of preferences
as input and outputs an allocation. The allocation is the result of the following process.
In each round, each student proposes the most preferred acceptable contract from which
she has not yet been rejected, if such a contract exists. Each college then rejects all but the
most preferred subset of contracts from these proposals. The algorithm terminates when no
proposal is rejected, and the output is the set of contracts proposed in the last round. Given
a Hungarian college admissions market, we denote the outcome of SP-DA by YSP-DA.

Student-receiving deferred acceptance outputs the allocation that corresponds to auxiliary-
college-proposing deferred acceptance (formally, the allocation to which this matching cor-
responds). Of note, in each round of the algorithm, a college may make multiple offers to
the same student (one by each auxiliary college). Given a Hungarian college admissions
market, we denote the outcome of SR-DA by YSR-DA.

In two-sided many-to-one matching (without contracts) markets with responsive pref-
erences, SR-DA is known as college-proposing DA. We intentionally avoid this label to
highlight the fact that colleges are not necessarily proposing the most preferred subset of
contracts that were not rejected. Since colleges’ preferences are not substitutable (Hatfield
and Milgrom, 2005), such a process would sometimes “renege” on proposals that were not
rejected due to the rejection of complementary contracts.18

17Abdulkadiroğlu and Sönmez (2003) establish a connection between stability and justified-envy-freeness in
what became the standard school choice framework. Romm et al. (2020) study the relation between stability
and the elimination of justified envy in a general matching with contracts markets. In the context of multi-
dimensional constraints, Delacrétaz et al. (2016) note that a weak form of no justified envy is independent of
stability.

18To see that a “college proposing” process would sometimes “renege” on proposals, consider a modification
to Example 1 where neither student finds the unfunded seat acceptable. In the first round, the poor student
is offered a funded seat and the rich student is offered an unfunded seat, which she declines. As a result, in
later rounds, the college would like to renege on the offer made to the poor student, and instead offer the
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Proposition 2. YSP-DA corresponds to the student-optimal stable matching in the related market.

Corollary 1 (Strategic properties of DA). In Hungarian college admissions markets:

1. SP-DA is strategy-proof for students.

2. A student can manipulate SR-DA if and only if she strictly prefers YSP-DA to YSR-DA.

Corollary 1 provides a bound on the number of applicants with incentives to misrepre-
sent their preferences to SR-DA.

4 The Set of Stable Allocations

We begin in Section 4.1 by studying the set of merit-based stable allocations. We show that
this set is nonempty, and that it includes the allocations that result from both SP-DA and SR-
DA. We also show that each college recruits the same number of students across all merit-
based stable allocations. In Section 4.2, we note that different stable allocations differ in
the number of assigned students and that there does not necessarily exist a student-optimal
stable allocation. We introduce the preference flip algorithm, a (non-merit-based) algorithm
designed to increase the number of admitted students compared to SR-DA and prove that it
is stable. We then demonstrate that achieving certain policy goals may not be feasible with
current computing technology. Specifically, Theorem 2 states that finding a largest stable
allocation is NP-hard.19

4.1 Merit-Based Stable Allocations
We begin by establishing a connection between merit-based stable allocations and stable
allocations in the related matching market.

Theorem 1. Given a Hungarian college admissions market:

1. Y is a merit-based certainly stable allocation if and only if the corresponding matching is stable
in the related matching market.

2. If Y is a merit-based stable allocation, then there exists a merit-based certainly stable allocation
Y′ that all students weakly prefer which assigns all students to the same colleges (potentially
under different contractual terms).

Corollary 2 (Existence). The set of merit-based stable allocations is nonempty in Hungarian
college admissions markets. In particular, it includes YSP-DA and YSR-DA.

Corollary 3 (Weak rural hospital theorem). In Hungarian college admissions markets:

1. The set of students assigned to some college is identical under all merit-based stable
allocations. Formally,

[
YSP-DA]

S = [Y]S for any merit-based stable allocation Y.

funded seat to the rich student.
19Recent advances in the market design literature show that solving some NP-hard problems is feasible in

practice (see Ágoston et al., 2016; Ágoston et al., 2021; Leyton-Brown et al., 2017).
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Moreover, if Y is a certainly stable merit-based allocation, then for each c ∈ C and t ∈ {0, 1}:

2. The number of state-funded (self-funded) students assigned to c is equal under YSP-DA

and Y. Formally,
∣∣YSP-DA ∩ (S× {c} × {t})

∣∣ = |Y ∩ (S× {c} × {t})|.

3. If college c does not fill one of its quotas under SP-DA, the same students are assigned
to c with these financial terms under Y. Formally, if

∣∣YSP-DA ∩ (S× {c} × {t})
∣∣ < qt

c
then YSP-DA ∩ (S× {c} × {t}) = Y ∩ (S× {c} × {t}).

Taken together, Corollaries 2 and 3 show that changing the orientation of DA cannot lead
to a change in the number or even the composition of the assigned students.

Corollary 4 (Weak consensus property). In Hungarian college admissions markets, all stu-
dents weakly prefer YSP-DA to any other merit-based stable allocation.

Taken together, Corollaries 2 and 4 imply that it is possible to identify the student-
optimal merit-based stable allocation time-efficiently (using the time-efficient SP-DA).

4.2 Beyond Merit-Based Stable Allocations
We begin by showing that Hungarian college admissions markets may admit stable alloca-
tions where funding is not allocated based on merit, and that the rural hospital theorem and
the consensus property do not extend to this domain.

Proposition 3. In Hungarian college admissions markets:

1. There may exist non-merit-based stable allocations.

2. Students may disagree on the most preferred stable allocation.

3. Different stable allocations may have more or fewer assigned students than YSP-DA.

Example 1 has already shown a non-merit-based stable allocation that assigns more stu-
dents to college than the unique merit-based stable allocation. In the merit-based stable
allocation, the higher-ranked (rich) student receives funding even though her preferences
are not sensitive to financial terms while the lower-ranked (poor) student, who is sensitive
to financial terms, remains unassigned. In the non-merit-based stable allocation, the college
applies its local market power over the rich student; i.e., the college refuses to allocate state
funding to the rich student who is not sensitive to financial terms.

Building on this intuition, we next present a stable algorithm designed to increase the
number of admitted students compared to SR-DA. The algorithm relies on the application
of local market power over students who are not sensitive to financial terms. We say that a
student, s, is not sensitive to financial terms in college c if she considers contracts with c to be
nearly perfect substitutes. Formally, for any c′ ∈ C and any t ∈ T, (s, c, t) �s (s, c′, t) ⇐⇒
(s, c, 1− t) �s (s, c′, t) and (s, c, 1− t) �s ∅ ⇐⇒ (s, c, t) �s ∅. A student is not sensitive to
financial terms if she is not sensitive to financial terms in any college.
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Preference Flip Algorithm Initialize a set A′ ⊆ A, where A is the set of student–college
pairs such that the student is not sensitive to financial terms in the college. For each pair in
A′, flip the order of the contracts with the college in the student’s original ROL, so that the
state-funded contract appears immediately after the self-funded contract, and run SP-DA
on the resulting problem. If the resulting allocation is certainly stable (with respect to the
original preferences), stop and output this allocation. Otherwise, remove some pairs from
A′ and repeat the process.

The description of the preference flip algorithm intentionally leaves two degrees of free-
dom: the choice of A′ and the choice of elements to remove from this set. In the empirical
application, we implement the preference flip algorithm by initializing A′ = A and by re-
moving pairs corresponding to the highest-ranked student in some college such that the pair
is in A′ and the state-funded contract between them is part of a potentially blocking alloca-
tion as described in the definition of certainly stable allocations (or a random pair, if no such
pair exists). We note that with this choice the preference flip algorithm is computationally
efficient.

Proposition 4. For any initial set A′ ⊆ A and any rule regarding the choice of elements to re-
move from A′, the preference flip algorithm results in a stable allocation. Furthermore, the resulting
allocation may not allocate funding based on merit.

In the main analysis we use the preference flip algorithm, which only applies local mar-
ket power over students who are not sensitive to financial terms. These students could
plausibly be identified using hard information. Supplemental Appendix D explores algo-
rithms that apply local market power more broadly. These algorithms use the observation
that a college has market power over students whose best feasible alternative to the funded
contract with the college is attending the college without state funding, even if they do not
rank both contracts with the college consecutively. Identifying these students in practice
would pose a bigger challenge.

In exploring the set of stable allocations, a natural objective is to identify a stable alloca-
tion that assigns the largest number of students. We conclude this section by showing that
this objective may not be feasible with current computation technology when the number of
students and colleges is large.

Theorem 2. Finding a maximum-size stable (or certainly stable) allocation in Hungarian college
admissions markets is NP-hard.

Theorem 2 determines that finding a maximum-size stable allocation is not computation-
ally feasible. In Supplemental Appendix B, we show that it is not even possible to guarantee
finding a stable allocation that achieves at least 94% of the size of the maximum-size stable
allocation. Since our time-efficient algorithm is not optimal, the difference (in cardinality)
between its result and the allocation that results from SR-DA is a lower bound on the max-
imal possible difference. Indeed, Appendix Table D1 presents the results of other stable
algorithms which apply market power more broadly and achieve a larger increase in the
number of assigned students in our empirical application.
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5 Large Hungarian College Admissions Markets

We have shown that Hungarian college admissions markets may admit stable allocations
where funding is not allocated based on merit, and that the rural hospital theorem and the
consensus property do not extend to this domain. In this section, we ask what is required
for these results to hold in large matching markets.

We find that when students’ sensitivity to financial terms is heterogeneous (i.e., some
students consider both contracts with the same college to be nearly perfect substitutes while
others do not), the preference flip algorithm assigns more students to college relative to
the outcome of DA (Theorem 3). By contrast, no stable allocation increases the number of
students assigned to college when all students consider both contracts with the same college
to be nearly perfect substitutes (Proposition 5) or when all students do not regard different
contracts with the same college as close substitutes (Proposition 6).

5.1 A Model of Large Hungarian College Admissions Markets
Random Hungarian college admissions markets A random Hungarian college admissions
market is a tuple Γ̃ =

〈
S, C,

{
�c,�c, q0

c , q1
c
}

c∈C , k, mode
〉

. It includes the sets of students and
colleges, as well as colleges’ preferences, rankings, and quotas. A random Hungarian college
admissions market induces a Hungarian college admissions market by drawing students’
preferences randomly. The randomization is governed by the integer k, which determines
the number of contracts to be considered, and the parameter mode, which determines the
mode of randomization.20

Modes of randomization We focus on two main modes of randomization, independent and
substitutes. Under the independent mode of randomization, each student’s preferences are
randomly drawn independently and uniformly from the set of all permutations over 2k
contracts (other contracts are not acceptable). Under this mode of randomization, a typical
student is extremely sensitive to financial terms (i.e., finds at most one set of financial terms
acceptable in each college).

Under the substitutes mode of randomization, preferences are drawn as follows. First,
for each student, k acceptable colleges are drawn uniformly at random. Second, a permu-
tation over the 2k contracts with these colleges is drawn independently and uniformly at
random. This mode of randomization leads to substantial heterogeneity in students’ sen-
sitivity towards financial terms (i.e., some students rank the state-funded contract and the
self-funded contract with the same college consecutively, while others do not).

We note that under the substitutes mode of randomization, there are no students who
are extremely sensitive to financial terms (i.e., rank state-funded contract exclusively). The
presence of such students would greatly simplify the proof of Theorem 3 and improve the
bounds therein.21

20We build on the model of Kojima and Pathak (2009) that builds on the earlier work of Immorlica and Mahdian
(2005, 2015) for large one-to-one matching markets (without contracts). Since we require colleges to have
capacities larger than one we follow the notation and conditions of Kojima and Pathak (2009). Hassidim
et al. (2017a) have shown that similar results hold for other large market models.

21Rheingans-Yoo (2020) proposes other ways to improve our bounds.
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All of our results (for both modes of randomization) continue to hold when all (or most)
students prefer state-funded seats to self-funded seats in the same program and when stu-
dents’ preferences are drawn from heterogeneous distributions (e.g., some students prefer
economics majors while others prefer physics).

Regular sequences of markets A sequence of random Hungarian college admissions mar-
kets,

{
Γ̃n}∞

n=1 is regular if there exist integers k, q̄ and λ, all greater than one, and a mode of

randomization mode, such that for each Γn =
〈

Sn, Cn,
{
�c,�c, q0

c , q1
c
}

c∈Cn , kn, moden
〉

:

1. |Cn| = n for all n,

2. kn = k and moden = mode for all n > 2k,

3. 0 < qt
c ≤ q̄ for all n, c ∈ Cn and t ∈ T,

4. s�c ∅ for all n, c ∈ Cn, and s ∈ Sn,

5. 1
λ n ≤ |Sn| ≤ λn for all n.

Condition 1 assures that the number of colleges grows as the sequence progresses. Con-
dition 2 assures that the distribution of preferences is governed by the same mode of ran-
domization and that the number of contracts that students consider acceptable is uniformly
bounded on the sequence. Condition 3 assures that the number of positions of each type is
positive and uniformly bounded across colleges and markets. Condition 4 assures that col-
leges find any student acceptable. Condition 5 assures that the number of students does not
grow much faster or much slower than the number of colleges. Kojima and Pathak (2009)
require only the first half of this condition. We require the second half as well since we are in-
terested in instances where a substantial fraction of colleges have multiple stable allocations.
In markets with a small number of students (who each find contracts with at most k colleges
acceptable) most colleges will not even be a party to any individually rational allocation.
The only other difference from the conditions of Kojima and Pathak (2009) is the require-
ment that colleges offer both types of seats (Condition 3). Had each college only offered one
type of seat, both the independent and the substitutes modes of randomization would induce
regular (uniform) Kojima and Pathak sequences of markets.22 All of our results continue to
hold if the fraction of colleges that offer multiple contracts is bounded away from zero.

5.2 Stable Allocations in Large Markets
Theorem 3. For any regular sequence of markets with the substitutes mode of randomization, there
exists ∆ > 0, such that comparing the stable allocation Ỹ′n to the outcome of SP-DA:

1. The expected number of assigned students is larger. Formally,

lim inf
n→∞

E
[∣∣Ỹ′n∣∣]

E
[∣∣∣ỸSP−DA

n

∣∣∣] > 1.

22These sequences would also meet Kojima and Pathak’s thickness condition.
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2. The expected fraction of newly assigned students, funding losers, and upward transfers are all
bounded below by ∆.

Finally, given access to students’ preferences, and colleges’ quotas and rankings of students, Ỹ′n can
be computed time-efficiently (i.e., in polynomial-time) using the preference flip algorithm.

Proposition 5. If all students in a Hungarian college admissions market are not sensitive to financial
terms, then the same students are assigned across all stable allocations, and each college is assigned
the same number of students across all stable allocations.

We note that Proposition 5 is not probabilistic and does not rely on any of the large
market assumptions.

Proposition 6. Let {Γ̃n}∞
n=1 be a regular sequence of markets such that the mode of randomization

is independent. Then, the expected fraction of colleges (students) that receive the same assignment
in all stable allocations approaches 1 as the number of colleges, n, approaches infinity. Furthermore,
with high probability, the fraction of colleges (students) that receive the same assignment in all stable
allocations is arbitrarily close to 1 in sufficiently large markets.

Proposition 6 states that the set of stable allocations is small when students do not re-
gard different contracts with the same college as close substitutes. This result generalizes
to a broad class of modes of randomization that preserve this property (see Supplemen-
tal Appendix B). These include modes of randomization where all (or most) students prefer
state-funded seats to self-funded seats in the same program as well as modes where stu-
dents’ preferences are drawn from heterogeneous distributions (e.g., some students prefer
economics majors while others prefer physics). In our empirical application, a large fraction
of applicants rank the state-funded and self-funded contracts with the same college (see
Section 6). This pattern is not consistent with any of these modes of randomization.

We conclude by noting that our model preserves the property of the Kojima and Pathak
model that the outcomes of SP-DA and SR-DA are similar.

Proposition 7. Let {Γ̃n}∞
n=1 be a regular sequence of markets such that the mode of randomization is

independent or substitutes. Then, the expected fraction of colleges (students) that receive a different
assignment under ỸSP−DA and ỸSR−DA approaches zero as the number of colleges, n, approaches
infinity.

6 Empirical Findings

In this section, we evaluate our theoretical predictions using data from Hungarian college
admissions. We document heterogeneity in applicants’ sensitivity to financial terms. Con-
sistent with our theory, we find that the preference flip algorithm increases the number of
applicants admitted to college relative to the outcome of SR-DA and that SP-DA and SR-DA
are essentially identical.23 Additionally, the preference flip algorithm benefits low socioeco-
nomic status applicants and increases geographic mobility, especially to the periphery.
23Appendix G presents a similar analysis using data from the Israeli Psychology Master’s Match, where an

overwhelming majority of applicants are not sensitive to financial terms. The preference flip algorithm does
not increase the number of admitted applicants.
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6.1 Data
Our main data source is an administrative dataset that contains information on the bach-
elor’s degree admissions process in Hungary. In particular, we observe each applicant’s
ROL, the priority score for each contract in the ROL, and all the information required to
(re)calculate these priority scores.24 This information includes grades in various subjects in
the final two years of high school (11th and 12th grades), performance in the matriculation
exams, and the number of points the applicant received for claiming a disadvantaged back-
ground. For each applicant we also observe gender, postal code, and a high-school identifier.
For each alternative (program–terms pair) the data includes its realized priority-score cutoff
(i.e., the minimal score that was required to gain admission to this alternative). We comple-
ment our data with hand-collected information on the program-specific capacities from the
2007 information booklet.

The second data source is the T-STAR dataset of the Hungarian Central Statistics Office.
We use it to obtain settlement-level annual information on collected income taxes. In par-
ticular, we calculate the per-capita gross annual income for all 3,164 settlements in 2007 and
merge it with our main administrative data based on settlement identifiers.

The third data source is the National Assessment of Basic Competencies (NABC). Follow-
ing Horn (2013), we create an NABC-based SES index, which is a standardized measure that
utilizes survey information of the NABC. The NABC-based SES index resembles the eco-
nomic, social, and cultural status (ESCS) indicator of the OECD PISA survey. It combines
three subindices: an index of parental education, an index of home possessions (number
of bedrooms, mobile phones, cars, computers, books, etc.), and an index of parents’ labor-
market status. Since this data is available staring in 2008, we calculate the average value of
students’ NABC-based SES index for each high school between 2008 and 2012, and merge
this with our main administrative dataset using high-school identifiers.25

Appendix Table C2 summarizes the means and standard deviations of the background
characteristics of applicants.

To set the stage for our main analysis, we first calculate the outcome of SR-DA. The SR-
DA assignment replicates the realized assignment for all but 3.2 percent of the applicants
(3,528 applicants).26 We call the resulting allocation the benchmark. Appendix Table C1

24Our data report up to 7 contracts from each ROL: the first 6 contracts and the contract to which the applicant
is assigned. The dataset also reports the number of contracts in each ROL. We observe the complete ROL for
91.7 percent of applicants and for 93.5 percent of all ranked contracts.

25The high-school-specific average NABC-based SES index is stable over time. Between 2008 and 2012, 95% of
the variation in the high-school-specific averages of the NABC-based SES index is explained by high-school
fixed effects. Furthermore, each year, about one-third of the student-level variation in the NABC-based SES
index is explained by high-school fixed effects.

26There are small gaps and issues that do not allow us to fully replicate the allocation. First, we only observe
up to 7 contracts in each ROL (corresponding to the top 6 choices and the realized allocation). Second,
we do not know the results of auditions and other specialized admissions exams that are held by a small
number of programs (e.g., art programs). Third, the mechanism has rules regarding cases where there are
multiple (tied) marginal applicants which are not observable to us (Biró, 2008; Biró and Kiselgof, 2015). We
address this by breaking priority ties with a single lottery. Finally, the data contain some inconsistencies, for
example, applicants with a priority score of zero assigned to selective programs. In our main analysis, we
address these inconsistencies by fixing the assignment of these applicants to the realized assignment, and
make the corresponding seats unavailable to others. Appendix E presents the results from other approaches,
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shows that the benchmark allocation is larger by 2,567 assigned applicants, and that the
difference is the result of increased utilization of self-funded seats. Intuitively, the higher
utilization of self-funded seats reduces the scope for increasing the size of the stable alloca-
tion using the preference flip algorithm.

6.2 The Distribution of Applicants’ Rank-Order Lists
Table 2 presents summary statistics on the characteristics of applicants’ ROLs for all ap-
plicants, and for disadvantaged and non-disadvantaged applicants separately. Panel A
presents statistics related to applicants’ sensitivity towards funding. Panel B focuses on
program characteristics, such as geographic location and field of study.

Panel A shows that 51.4 percent of applicants were extremely sensitive to financial terms:
they ranked state-funded contracts exclusively. Other applicants were less sensitive to fi-
nancial terms, including 11.6 percent of the applicants who ranked the same program with
state-funding and self-funding consecutively on the top of their ROL.

Panel B shows that 49.4 percent of applicants rank exclusively contracts that are in the
same settlement, 35 percent of applicants rank exclusively contracts at a single university,
and 26.3 percent of applicants rank exclusively contracts at a single faculty of a university.
Panel B also shows that 54.9 percent of applicants rank exclusively contracts in a single field
of study, and 29.6 percent of applicants rank exclusively contracts in a single major.

Disadvantaged and non-disadvantaged applicants differ in terms of their sensitivity to fi-
nancial terms and other program characteristics. Non-disadvantaged applicants were nearly
twice as likely to rank the same program with state-funding and self-funding consecutively,
and 29.4 percentage points less likely to rank state-funded contracts exclusively compared
to disadvantaged applicants. Additionally, disadvantaged applicants were less likely to ex-
press preference for program characteristics.

Overall, these patterns suggest that disadvantaged and non-disadvantaged applicants
trade off program characteristics (e.g., major or location) and financial terms differently.
Disadvantaged applicants are more sensitive to financial terms, while non-disadvantaged
applicants are more willing to pay for certain program characteristics. Since market power
can only be exercised over applicants who rank two contracts in the same program, these
patterns suggest that the direct effect of the preference flip algorithm would likely benefit
disadvantaged applicants.

6.3 The Size of the Set of Stable Allocations
This section compares the stable allocations resulting from SR-DA, SP-DA, and the prefer-
ence flip algorithm along several dimensions. We show that SR-DA and SP-DA yield essen-
tially identical allocations, while the preference flip algorithm leads to meaningful changes:
it changes the assignment of approximately 8 percent of college applicants benefiting low-
SES applicants disproportionately, increases the number of applicants admitted to college
by about 2 percent, and promotes geographic mobility relative to SR-DA and SP-DA.

and establishes the robustness of our findings.
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Table 2: Characteristics of applicants’ ROLs

All
applicants

(%)

Non-
disadvantaged

(%)

Disadvantaged
(%)

p-value
((2)=(3))

(1) (2) (3) (4)
A. Preference for funding
State-funded contract exclusively 51.4 50.0 79.4 0.00
Self-funded contract exclusively 18.5 19.2 2.0 0.00
State- and self-funded contracts 30.1 30.8 18.6 0.00
Same study program consecutively 15.5 15.8 8.3 0.00
Same study program consecutively on the
top of the ROL 11.6 11.9 6.2 0.00

B. Preference for program characteristics
Single program location 49.4 50.0 36.6 0.00
Single university 35.0 35.4 27.4 0.00
Single faculty 26.3 26.9 15.3 0.00
Single field of study 54.9 55.6 40.1 0.00
Single major 29.6 30.3 15.5 0.00
# of applicants 108,854 103,840 5,014
Notes: The table reports summary statistics on applicants’ ROL. Panel A focuses on preference for funding.
Specifically, Panel A shows the share of applicants who rank state-funded (self-funded) contracts exclusively,
the share of students who both rank state-funded and self-funded contracts, and the share of applicants who
rank the same study program with state-funding and self-funding consecutively, and who rank the same study
program with state-funding and self-funding consecutively on the top of the ROL. Panel B focuses on prefer-
ence for program characteristics. Specifically, Panel B shows the share of applicants who rank exclusively
contracts that are in the same settlement (single program location), at a single university (single university),
and at a single faculty of a university (single university), and the share of applicants who rank exclusively
contracts in a single field of study, and in a single major. Column (1) presents these shares for all applicants,
and columns (2) and (3) report these shares for non-disadvantaged and disadvantaged applicants, respectively.
We test whether these shares differ between disadvantaged and non-disadvantaged applicants. Column (4)
reports the corresponding p-values.

6.3.1 Winners, Losers, and the Number of Assigned Applicants

Table 3 compares the outcome of the preference flip algorithm to the SR-DA benchmark.
Consistent with Theorem 3, Panel A shows that the preference flip algorithm increases the
number of assigned applicants by 1.9 percent (1,558 applicants). The increase is concentrated
in self-funded, full-time seats.

In the absence of the consensus property, it is interesting to understand how the prefer-
ence flip algorithm affects different groups of students. Panel B provides statistics on the
set of winners from the preference flip algorithm. We find that the preference flip algorithm
generates 4,798 winners relative to SR-DA. Approximately 44 percent of the winners were
not assigned under the benchmark (i.e., are newly assigned by the preference flip algorithm)
and a similar number are assigned to a different program from that of their benchmark as-
signment. The rest of the applicants are assigned to the same program under preferable
financial terms.

Panel C provides statistics on the set of losers from the preference flip algorithm. We
find that the preference flip algorithm generates 4,260 losers relative to SR-DA. The majority
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of losers (more than 70 percent) are assigned to the same program under less favorable
financial terms. The rest of the losers are assigned to another program under a contract
they ranked lower or become unassigned. Our theoretical analysis shows that the impact of
the preference flip algorithm on redistribution is complex (Proposition 4). The direct effect
of applying local market power is that some applicants lose their state funding and other
applicants win by gaining admission to the program with state funding (instead of being
unassigned or being assigned to a less desirable alternative). But, if the program already
filled its capacity for self-funded applicants, this means that some applicants will lose their
assignment to the unfunded contract. Additionally, displaced applicants (either winners or
losers) can lead to chains of reassignments. This complexity is reflected in Panels B and C.
Our empirical evaluation shows that, in spite of the theoretical possibility, a relatively small
number of losers become unassigned or assigned to a new program.

We also evaluate what a single college can achieve by applying local market power. To
this end, we focus on programs that can increase the size of their cohort (have unfilled self-
funded capacity) and run a version of preference flip algorithm that allows only this pro-
gram to apply local market power (by initializing A′ = A ∩ (S× {c} × T)). We find that, on
average, the number of applicants assigned to this program increases by 3.6. This number
corresponds to a total increase of 1,741 applicants (compared to 1,558 when A′ = A).

Table 3: Winners, losers, and the number of assigned applicants

Benchmark Preference flip
SR-DA SP-DA algorithm

(1) (2) (3)
A. Number of assigned applicants
Assigned to a contract 84,130 84,130 85,688
Assigned to a state-funded contract 48,725 48,725 48,709
Assigned to a self-funded contract 35,405 35,405 36,979
Assigned to a self-funded, full-time contract 13,321 13,321 14,418

B. Winners 8 4,798
– Newly assigned 0 2,121
– New program 8 2,282
– Same program, preferred financial terms 0 395

C. Losers 0 4,260
– Newly unassigned 0 563
– New program 0 674
– Same program, less preferred financial terms 0 3,023
Notes: The table presents the number of assigned applicants under various stable assignments (Panel
A). Panels B and C describe the number of winners and losers from changing the benchmark SR-DA
to SP-DA and to our alternate algorithms. An applicant is a winner if she is assigned to a contract
she ranked higher than her contract in the benchmark assignment. An applicant is a loser if she is
assigned to a contract she ranked lower than her assigned contract in the benchmark assignment or
if she becomes unassigned. Column (1) shows the benchmark assignment. Column (2) presents the
SP-DA assignment. Column (3) presents the preference flip algorithm assignment.

Column (2) of Table 3 presents the results of changing SR-DA to SP-DA. As predicted
by Corollary 3, SP-DA and SR-DA assign the same number of applicants. Furthermore,
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changing the assignment mechanism from SR-DA to SP-DA only changes the allocation of 8
applicants (approximately 0.01%). Consistent with Corollary 4, all 8 applicants prefer their
SP-DA assignment.

According to Corollary 1, only the 8 applicants who strictly prefer the outcome of SP-DA
to SR-DA have an incentive to misrepresent their preferences under SR-DA. This finding
supports our reliance on reported preferences in our interpretation of winners and losers.27

6.3.2 Characteristics of Winners and Losers

Table 4 compares the characteristics of winners and losers for the preference flip algorithm.
On average, winners’ SES is lower than losers’. The share of disadvantaged applicants
among winners is 6.0 percent relative to 2.5 percent among losers. Additionally, the average
per-capita income in winners’ settlements of residence is lower, the average NABC-based
SES index in their high schools is higher, and they are less likely to live in the capital or a
county capital.

Table 4 also reveals that, on average, winners have lower academic achievement than
losers. The average 11th-grade GPA among winners is 3.5, relative to 3.7 among losers. The
difference corresponds to 0.26 (=(3.690-3.475)/0.84) standard deviations of the distribution
of college applicants’ 11th-grade GPA. In summary, applicants who prefer the assignment re-
sulting from the preference flip algorithm to the merit-based benchmark are lower-achieving
low-SES applicants.

6.3.3 Geographic Mobility

Table 5 studies geographic mobility. Geographic mobility is affected through winners who
get newly assigned or get assigned to a new program at another location, and through the
smaller number of losers who get unassigned or get assigned to a new program at another
location. We compare the allocation resulting from the preference flip algorithm to the
benchmark across three dimensions of geographic mobility. First, columns (1) and (2) fo-
cus on movers: applicants whose assigned study program is not located in the county where
they reside. Second, columns (3) and (4) focus on applicants who get assigned to a study
program in the periphery. Third, columns (5) and (6) focus on the subset of movers who
move to the capital, that is, applicants who get assigned to a study program in the capi-
tal but do not reside there. Since low-SES applicants are more likely to reside outside the
capital, and prestigious study programs are located in the capital, this latter dimension of
geographic mobility may be interpreted as a measure of social mobility (Mari et al., 2020).

Columns (1) and (2) show that the preference flip algorithm increases the number of
movers by 1,094 (from 51,221 to 52,315, see Panel A). This increase is largely explained by

27To verify that applicants had limited incentives to misrepresent their preferences, we also conducted a sim-
ulation study. We added to each applicants’ ROL all contracts with 6 programs in fields that appear on the
original ROL. We then drew a random ROL consisting of all these contracts uniformly at random and ran
SP-DA and SR-DA. We repeated this process 100 times. On average, 7.1 applicants (out of the 108,854) could
manipulate SR-DA. We repeated this analysis requiring that the funded contract in each program is ranked
higher than the unfunded contract with the same program in all ROLs. On average, 7.4 applicants could
manipulate SR-DA.
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Table 4: Characteristics of winners and losers: preference flip algorithm

Winners Losers p-values: (1)=(2)
(1) (2) (3)

Disadvantaged 0.060 0.025 0.000
Per-capita annual gross income (1000 USD, 2007 prices) 9.719 10.399 0.000
NABC-based SES index 0.174 0.306 0.000
Capital 0.184 0.280 0.000
County capital 0.190 0.216 0.003
Town 0.330 0.293 0.000
Village 0.297 0.212 0.000
11th-grade GPA (1–5) 3.475 3.690 0.000
Female 0.571 0.552 0.076
Number of applicants 4,798 4,260 9,058
Notes: The table reports the mean values of characteristics of winners and losers from changing
the benchmark SR-DA to the preference flip algorithm. An applicant is a winner if she is assigned
to a contract she ranked higher than her benchmark assignment. An applicant is a loser if she is
assigned to a contract she ranked lower than her assigned contract in the benchmark assignment or
if she becomes unassigned. Column (3) presents p-values for the equality of mean characteristics of
winners and losers.

the increase in the number of newly assigned applicants to a location outside their county
of residence (1,330 newly assigned movers, see column (2) of Panel B). The difference is the
result of 311 movers who become unassigned, an increase of 48 in the number of movers
among winners who are assigned to a new program (=1,494–1,446), and an increase of 27 in
the number of movers among losers who are assigned to a new program (=403–376).

Columns (3) and (4) show that the number of applicants assigned to the periphery in-
creases by 1,110 (from 47,845 to 48,955, see Panel A). The increase in the number of applicants
assigned to the periphery accounts for 71 percent of the increase in the number of assigned
applicants. This finding is in line with the fact that most seats in the capital are filled in
the benchmark assignment (see Appendix Table C8). Among winners, the number of appli-
cants assigned to the periphery increases by 1,269 (=1,460+1,211–1,402), and, among losers,
the number of applicants assigned to the periphery decreases by 159 (=339–233–265). Thus,
unlike rural hospitals, peripheral colleges can improve the utilization of available seats.

Columns (5) and (6) show that the number of applicants who move to the capital in-
creases by 381 (from 22,444 to 22,825, see Panel A). Thus, applicants from the periphery
account for 85 percent (=381/448) of the increase in the number of applicants assigned to
the capital. Among winners, the number of applicants who move to the capital increases by
590 (=435+694–539), and, among losers, the number of applicants who move to the capital
decreases by 209 (=167–167–209).

7 Discussion

We study stable allocations in college admissions markets where students can attend the
same college under different financial terms. We show that the deferred acceptance algo-
rithm identifies a stable allocation where funding is allocated based on merit and that the
set of merit-based stable allocations is small. By contrast, when students are heterogeneous
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Table 5: Geographic mobility: Preference flip algorithm

Mover Assigned to periphery Moved to capital
SR-DA PFA SR-DA PFA SR-DA PFA

(1) (2) (3) (4) (5) (6)
A. Total
All assigned applicants 51,221 52,315 47,845 48,955 22,444 22,825

B. Winners
Newly assigned (N= 2,121) – 1,330 – 1,460 – 435
New program (N= 2,282) 1,446 1,494 1,402 1,211 539 694

C. Losers
Newly unassigned (N= 563) 311 – 233 – 167 –
New program (N= 674) 376 403 265 339 209 167
Notes: The table presents the number of movers (i.e., applicants whose assigned study program is not
located in the county where they reside), of applicants assigned to the periphery (i.e., not to the capital),
and of applicants who moved to the capital (i.e., applicants who get assigned to a study program in the
capital but do not reside there) under the preference flip algorithm (PFA) and in the benchmark SR-DA
assignments. Panel A presents the total number of applicants with these characteristics. Panels B and C
focus on winners and losers who are assigned to a different study program.

in the way they trade off program characteristics and contractual terms, the set of stable al-
locations is large and different stable allocations differ in the number of students assigned
to college.

While our focus was on financial aid, our results generalize to setting with other contrac-
tual terms. In the context of college admissions, such terms include specialized study tracks
(e.g., a business school offering management and accounting tracks) or access to dormito-
ries. Beyond college admissions, financial terms may correspond to different service terms
in the military (Sönmez, 2013) or different levels of compensation (Niederle, 2007).

Our findings raise several important questions. First, how does one implement alterna-
tive stable allocations? This is challenging, because non-merit-based stable mechanisms give
academically strong applicants an incentive to overstate their sensitivity to financial terms.
One approach for addressing this challenge is to use hard information. For example, gov-
ernments may use existing administrative data or facilitate the collection of information by
colleges through forms like the Free Application for Federal Student Aid (FAFSA). Amer-
ican college applicants who complete this form that determines their eligibility for federal
financial aid can choose to forward this information to particular colleges. Similarly, en-
rollment management and personalized financial aid packages are widespread in the U.S.
college admissions market, and private companies are offering financial aid optimization
tools using large proprietary datasets (Lieber, 2021).

Another interesting question is how to compute a stable allocation that supports the objectives
of a policymaker. Policymakers may have different objectives (e.g., maximize the number of
students assigned, diversity, etc.). We have shown that—at least for the objective of max-
imizing the number of assigned students—this computation may be hard. Still, in college
admissions markets, a long waiting period until the release of official result is common, and
this may allow solving realistic-size problems in practice. Leveraging our characterization of
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stability (Proposition 1), integer programming methods in the spirit of Ágoston et al. (2016)
and Delorme et al. (2019) are a promising direction.
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Appendix A Proofs

Proof of Proposition 1. If Y violates one of Conditions 1–4, then it is not stable. For the other
direction, assume Y is not stable. We show that if Y violates none of Conditions 1,2, or 4,
then if must violate Condition 3.

Since Y is individually rational (by Condition 1), the allocation is blocked through some
Z 6= ∅. By Condition 4, Z′ contains a contract (s̄, c, t̄) such that (s̄, c, 1− t̄) /∈ Y. Furthermore,
Y is also blocked through Z′ = Chc(Y ∪ Z) \Y, which contains (s̄, c, t̄).

Let (s, c, t) ∈ Z′ be a contract with the highest ranked student according to�c (formally,
ŝ�c s =⇒ ({ŝ} × {c} × T) ∩ Z′ = ∅). By Condition 2, Y is not blocked through {(s, c, t)}.
Therefore, the allocation Y assigns qt

c students to c under the financial terms t, and all of
them are ranked higher than s according to�c. Therefore, since (s, c, t) ∈ Ch(Y ∪ Z′), there
must exist a contract (s′, c, 1− t) ∈ Z′ such that (s′, c, t) ∈ Y. We claim that the allocation
must be blocked through {(s, c, t), (s′, c, 1− t)} (in violation of Condition 3).

To see this, note that if |Y ∩ (S× {c} × {1− t})| < q1−t
c (i.e., c’s (1− t)-quota is not full),

then c would prefer to add the contract (s, c, 1− t) (s is acceptable to c since all contracts in
Z′ are), and swaps in the identities of the recipients of financial aid are less important to the
college than the composition of the cohort. Otherwise, both of c’s quotas are full. Thus, there
exists some s′′ such that (s′′, c, 1− t) ∈ Y and s′′ /∈ [Chc(Y ∪ Z′)]S. This holds since s (a new
student) must displace someone (both quotas are full), and all students who get assigned to c
under financial terms t in Y are ranked higher than s according to�c (hence, for (s, c, t) to be
chosen by c, a contract with each of them must also be chosen). We denote by s∗ be the lowest
ranked student according to�c such that (s∗, c, 1− t) ∈ Y and s∗ /∈ [Chc(Y ∪ Z′)]S. Finally,
note that s′ 6= s∗, and by the properties of �c we have Chc (Y ∪ {(s, c, t), (s′, c, 1− t)}) =
((Y ∩ (S× {c} × T)) ∪ {(s, c, t), (s′, c, 1− t)}) \ {(s′, c, t), (s∗, c, 1− t)}.

Proof of Proposition 2. On the run of SP-DA, colleges never face a choice from a set that in-
cludes two contracts with the same student. Consequently, colleges’ choices on the run of
the algorithm coincide with the union of the choices of the two corresponding auxiliary col-
leges in the related market. Hence, the corresponding matching of YSP-DA in the related
market is the student-optimal stable matching.

Proof of Corollary 1. A student who benefits from misrepresenting her preferences to SP-DA
(SR-DA) can do the same in the related market (by Proposition 2). The corollary, therefore,
follows from the results of Demange et al. (1987), Dubins and Freedman (1981), and Roth
(1982) for the related market.

Proof of Theorem 1. If Y corresponds to a stable matching then Y is certainly stable: We
prove the counterpositive: that if Y is not certainly stable, then the corresponding matching
is not stable. Let Y be a feasible allocation. If Y is not certainly stable, then it must violate at
least one of Conditions 1–3 of Proposition 1 or Condition 4’. If Y violates Condition 1 (Y is
not individually rational), then either some student is assigned an unacceptable contract, or
some college violates its quotas, or some college is assigned an unacceptable student. In all
cases the corresponding matching also violates individual rationality. If Y violates Condi-
tion 2 (Y is blocked through {(s, c, t)}), then either |Y ∩ (S× {c} × {t})| < qt

c or there exists
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(s′, c, t) ∈ Y such that s �c s′. In either case, s and (c, t) block the corresponding matching
in the related market. If Y violates Condition 3 (Y is blocked through {(s′, c, 1− t) , (s, c, t)}
such that (s, c, 1 − t) /∈ Y and (s′, c, t) ∈ Y), then the student s′ and the auxiliary college
(c, 1− t) block the corresponding matching. Finally, if an individually rational allocation, Y,
violates Condition 4’ then either there exits a college, c and a pair of students that want to
swap their terms in this college (in which case the higher ranked student according to �c
and the auxiliary college that this student prefers form a blocking pair in the related market),
or there exists a college c where some student prefers to get different terms, and the quota of
these terms is not full (in which case, the student and the auxiliary college that she prefers
form a blocking pair in the related market).

If Y corresponds to a stable matching in the related market, Y allocates funding based
on merit: Let Y be a stable allocation that corresponds to a stable matching in the related
two-sided matching market. Then, for each c and t, if s is matched with (c, t) and s′ �c s
then s′ must weakly prefer her assignment to (c, t).

If Y is merit-based certainly stable, then it corresponds to a stable matching in the
related market: Since Y is stable, the corresponding matching cannot violate individual
rationality. Similarly, if it is blocked by s and (c, t) it must be that (s, c, 1 − t) ∈ Y, since
otherwise Y would be blocked by (s, c, t). However, by Condition 4’ if (s, c, 1− t) ∈ Y and
(s, c, t) �s (s, c, 1− t) ∈ Y then qt

c students are assigned to c under Y and since Y is merit-
based, all of these students are ranked higher than s according to�c.

If Y is merit-based stable, then there exists a merit-based certainly stable allocation
that all students weakly prefer: If Y is certainly stable, we are done. Otherwise, Condition 4’
is violated. Since funding is allocated based on merit, this means that there exist s ∈ S and
c ∈ C such that (s, c, t) ∈ Y, (s, c, 1− t) �s (s, c, t), and Y ∩ (S× {c} × 1− t) < q1−t

c (but
the college prefers that s is assigned under t). Let s′ be the highest ranked such student
according to�c. Let Y′ denote the allocation Y \ {(s′, c, t)}⋃{(s′, c, 1− t)}. This allocation
is stable as otherwise Y is not stable (it is blocked through the same set of contracts, or
through the same set of contracts together with {(s′, c, 1− t)}). It is merit-based since s′ is
maximal with respect to �c. If Y′ is certainly stable, we are done. Otherwise, repeat the
process. Since in each iteration all students are weakly better off and one student is (strictly)
better off, the process will reach a certainly stable allocation after a finite number of steps
(Condition 4’ cannot be violated if all students receive their first choices).

Proof of Corollary 2. Follows from Gale and Shapley (1962) by Theorem 1 and Proposition 2.

Proof of Corollary 3. Follows from the rural hospital theorem for the related market.

Proof of Corollary 4. Follows from the consensus property in the related market.

Proof of Proposition 3. Follows from Example 1 in the main text and Example 2 below.

Example 2. There are three students, S = {r, p, g}, and two colleges, C = {h, c}. College h
has two seats, but only one of these seats is state-funded (q0

h = 1, q1
h = 1), and college c has

a single state-funded seat (q0
c = 0, q1

c = 1). Both colleges rank r first, p second, and g third
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(i.e., r �h p �h g and r �c p �c g). Students’ preferences are (r, h, 1) �r (r, h, 0) �r ∅,
(g, h, 1) �g (g, h, 0) �g ∅, and (p, h, 1) �p (p, c, 1) �p ∅.

Under YSP-DA = {(r, h, 1), (p, c, 1), (g, h, 0)}, r and g are assigned to h, and p is assigned to
c. An alternative stable allocation, {(r, h, 0), (p, h, 1)}, has the two highest-ranked students,
r and p, assigned to h, while the lowest-ranked student, g, remains unassigned.

Proof of Proposition 4. The algorithm terminates since the finite set A′ becomes smaller in
each iteration. If it stops while A′ is not empty, the output is stable by construction. Other-
wise, it is stable as it coincides with SP-DA. To see that the resulting stable allocation may
not allocate funding based on merit note that it selects the non-merit-based stable allocation
in Example 1.

Proof of Theorem 2. We prove that Theorem 2 holds even if colleges are restricted to offer no
more than one seat under each of the financial terms. Our proof relies on a reduction—we
show that an algorithm that identifies a stable (certainly stable) allocation of maximum size
quickly (in running time polynomial in the size of the input) can also be used to quickly
produce a solution to another problem that is known to be NP-hard. Therefore, identifying
such an algorithm proves that P = NP. The construction is provided in Supplemental Ap-
pendix B.

Proof of Theorem 3

Definition 1. For k+ 1 distinct colleges, c, c′1, c′2, . . . , c′k ∈ Cn, and q1
c + q1

c′1
+ q0

c′1
+ 2(k− 1)q̄+ 1

distinct students, {ri}
q1

c
i=1, p, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 , w, and {{sj
i}

2q̄
i=1}

k
j=2 let the event

En

(
c, {c′j}k

j=1, p, w, {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 , {{sj
i}

2q̄
i=1}

k
j=2

)

denote the case where:

1. r1 �c r2 �c · · · �c rq1
c
�c p

2. s1
1 �c′1

s1
2 �c′1

· · · �c′1
s1

q0
c′1
+q1

c′1
−1
�c′1

w and p�c′1
w

3. sj
1 �c′j

sj
2 �c′j

· · · �c′j
sj

2q̄ �c′j
w for each 2 ≤ j ≤ k

4. The only students who find contracts with c acceptable are {ri}
q1

c
i=1 and p. Formally, for

all s ∈ Sn \
(
{ri}

q1
c

i=1
⋃{p}

)
and all t ∈ T, ∅ �s (s, c, t).

5. The only students who find contracts with c′1 acceptable are p, {s1
i }

q1
c′1
+q0

c′1
−1

i=1 , and w.

Formally, ∅ �s (s, c′1, t) for all s ∈ Sn \
(
{s1

i }
q1

c′1
+q0

c′1
−1

i=1
⋃{p, w}

)
and all t ∈ T.
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6. For j ≥ 2, the only students who find contracts with c′j acceptable are {sj
i}

2q̄
i=1 and w.

Formally, ∅ �s (s, c′j, t) for all s ∈ Sn \
(
{sj

i}
2q̄
i=1

⋃{w}) and all t ∈ T.

7. Each rj prefers (rj, c, 1) to (rj, c, 0) and prefers (rj, c, 0) to any other contract. Formally,

(rj, c, 1) �rj (rj, c, 0) �rj (rj, u, t) for each rj ∈ {ri}
q1

c
i=1, and u ∈ Cn \ {c} and t ∈ T.

8. p prefers (p, c, 1) to (p, c′1, 1) and prefers (p, c′1, 1) to any other contract. Formally,
(p, c, 1) �p (p, c′1, 1) �p z for each z ∈ ({p} × Cn × T) \ {(p, c, 1), (p, c′1, 1)}.

9. (w, c′1, 1) �w (w, c′2, 1) �w · · · �w (w, c′k, 1) �w ∅.

10. Each sj
i prefers (sj

i , c′j, 1) to (sj
i , c′j, 0) and prefers (sj

i , c′j, 0) to any other contract. Formally,

(sj
i , c′j, 1) �

sj
i
(sj

i , c′j, 0) �
sj

i
(sj

i , u, t) for each 2 ≤ j ≤ k, sj
i ∈ {s

j
i}

q̄
i=1, and u ∈ Cn \ {c}

and t ∈ T.

Lemma 1. There exists F > 0 so that, so long as Conditions 1–3 of Definition 1 are met, the event

En

(
c, {c′j}k

j=1, p, w, {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 , {{sj
i}

2q̄
i=1}

k
j=2

)
is realized with probability greater than

F/n
q1

c+q1
c′1
+q0

c′1
+2(k−1)q̄+k+1

.

Proof. First, observe that Conditions 1–3 depend on colleges rankings exclusively, so stu-
dents’ preferences are independent from them. Second, it is well-known since Immorlica
and Mahdian (2005) that conditions of the form “m schools are not ranked by some subset of
students” have a probability that is bounded below by a constant when each student is in-
terested in a small number of colleges.28 Third, the unconditional probability that a stu-
dent’s preferences meet Condition 7 or 10 is greater than f /n for f > 0 (that depends on
k), and the probability conditional of Conditions 4–6 being met is slightly greater. Similarly,
the unconditional probability for the preferences of p (respectively w) to meet Condition 8
(respectively 9) is greater than f /n2 (respectively f /nk) and the probability conditional of
Conditions 4–6 being met is slightly greater. Since students’ preferences are drawn inde-
pendently, the product of the lower bounds is a valid lower bound for the probability of the
event.

Lemma 2. Given a Hungarian college admissions market, with s �c ∅ for all s ∈ S and c ∈ C,
there are at least |S| · (|S| − 1)/4 pairs of distinct students such that both are ranked outside the top
decile of� by at least 40 percent of the colleges.

Proof. We prove this combinatorial claim using the probabilistic method. First, note that
the fraction of pairs of students who both appear in the bottom 9 deciles of � of at least
4n/10 colleges is equal to the probability that this condition is satisfied by a random pair
of students drawn uniformly at random from all possible distinct pairs. Let 1c(s, s′) equal 1

28The probability that m schools are not ranked by any student is greater than (1 − mk/n)λn converges to
e−λmk.
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if s and s′ are is in the top 10 percent of �c and zero otherwise. Then, if a pair of distinct
students (s, s′) is drawn uniformly at random, the expected value of 1c(s, s′) is lower than
0.2 using (using Bonferroni’s inequalities). By Markov’s inequality

Pr

[
∑
c∈C

1c(s, s′) > 0.4 |C|
]
≤ 0.2 |C|

0.4 |C| =
1
2

which completes the proof.

Lemma 3. There exists M > 0 such that there are more than M · n
q1

c+q1
c′1
+q0

c′1
+2(k−1)q̄+k+2

ways to

select

(
c, {c′j}k

j=1, p, w, {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 ,
{
{sj

i}
2q̄
i=1

}k

j=2

)
such that Conditions 1–3 of Defini-

tion 1 are met.

Proof. By Lemma 2 there are at least (n/λ− 2)2/4 ways to choose pairs of students that are
ranked outside the top decile by at least n/4 colleges. Given such a pair of students, let c
and {c′j}k

j=1 be colleges such that both students are ranked at the bottom 90 percent (three

are at least α · nk+1 ordered ways the choose them, for α > 0). Label the member of the pair

that is ranked lower in c′1 as w and the other student as p. Choose {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 ,
and {{sj

i}
2q̄
i=1}

k
j=2 distinct students who appear at the top 10 percent of the corresponding

colleges (c for ri’s and c′j for sj
i’s). There at least β · n

q1
c+q1

c′1
+q0

c′1
−1+2(k−1)q̄

possible selections,
for some β > 0. Multiplying the three bounds we get the required result.

Lemma 4. For any college c, and any two different selections, z and z′, of(
{c′j}k

j=1, p, w, {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 , {{sj
i}

2q̄
i=1}

k
j=2

)
,

the events En (c, z) and En (c, z′) are disjoint. Furthermore, there exists a polynomial-time algorithm
that identifies the set {z | En (c, z) is realized}.

Proof. We describe a polynomial-time algorithm and show that it must identify the only
realized event of the form En (c, z), or determine that no such event is realized.

Algorithm

1. Find a student, s, that ranks (s, c, 1) first and (s, c′, 1) second, for c′ 6= c. If no such
student exists, declare that the set is empty and stop. Otherwise, this student is the
candidate p, and the college c′ is the candidate c′1.

2. Find all students other than the candidate p that rank contracts with c. If their number
differs from q1

c + 1 declare that the set is empty and stop. Otherwise, the lowest ranked
one according to�c is the candidate w. If one of the other q1

c students does not rank
the funded contract with c first and the unfunded contract with c second, declare that
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the set is empty and stop. Otherwise, they are the candidate {ri}
q1

c
i=1 (with indices

determined based on�c and Condition 1 of Definition 1).

3. If the candidate w ranks some funded contract higher than the funded contract with
the candidate c′1, declare that the set is empty and stop. Otherwise, set the candidate{

c′j
}k

j=2
as the remaining colleges (with indices determined based on the preferences

of the candidate w and Condition 9 of Definition 1).

4. Verify that the number of students ranking the candidate c′j is exactly as required in
the conditions (2q̄ for j > 1, and q1

c′1
+ q0

c′1
− 1 for the candidate c′1) and that all of them

rank the funded contract with c′j first and the unfunded contract with c′j second. If this
isn’t the case, declare that the set is empty and stop. Otherwise, set these students as
candidate sj

i , with indices determined by Conditions 2 and 3 of Definition 1.

5. Declare that the event indexed by the vector of candidates was realized.

It is clear that if an event of the form En (c, z) is realized the algorithm must identify it. Since
the output of the algorithm is a unique event, this proves that En (c, z) and En (c, z′) are
disjoint for different selections of z and z′, as required.

Lemma 5. For any student w, and any two different selections, z and z′, of(
c, {c′j}k

j=1, p, {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 , {{sj
i}

2q̄
i=1}

k
j=2

)
,

the events En (w, z) and En (w, z′) are disjoint.29

Proof. Towards contradiction, assume that both events are realized. By Condition 9 of Defi-
nition 1, z and z′ share the same c′1 (it must be a party to the highest ranked funded contract
according to w’s preferences). Hence, z and z′ share the same p (it is the only student that
ranks the funded contract with c′1 second after another funded contract. This implies that z
and z′ share the same c (it is the college that is a party to the first ranked contract of p). But
this is a contradiction to Lemma 4, that states that events that share the same selection of c
are disjoint.

Lemma 6. For any student p, and any two different selections, z and z′, of(
c, {c′j}k

j=1, w, {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 , {{sj
i}

2q̄
i=1}

k
j=2

)
,

the events En (p, z) and En (p, z′) are disjoint.
29We abuse notation for readability. The notation is intended to represent a student playing the role of w in

Definition 1. The same remark applies to Lemma 6.
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Proof. By Condition 8 of Definition 1, if both events are realized, then z and z′ share the same
c (it must be a party to the highest ranked contract according to p’s preferences). But this is
a contradiction to Lemma 4.

Lemma 7. For any student r1, and any two different selections, z and z′, of(
c, {c′j}k

j=1, p, w, {ri}
q1

c
i=2, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 , {{sj
i}

2q̄
i=1}

k
j=2

)
,

the events En (p, z) and En (p, z′) are disjoint.

Proof. By Condition 7 of Definition 1, if both events are realized, then z and z′ share the same
c (it must be a party to the highest ranked contract according to r1’s preferences). But this is
a contradiction to Lemma 4.

Proof of Theorem 3. First, note that by Lemmas 1 and 3 the expected number of events En(·)
that are realized is at least L · n for some L ∈ (0, 1). Second, Lemma 4 guarantees that fixing
c, the events En(c, z) are disjoint for different selections of z (where z is a shorthand for all
other selections needed to an event as in Definition 1). This means that the probability that
fewer than Ln/2 colleges play the role of c in an event En(c, z) that is realized is at most
(2− 2L)/(2− L). In other words, the probability that more than Ln/2 colleges play the role
of c in an event En(c, z) that is realized is at least L/(2− L).

Third, note that if the preference-flip algorithm is initialized to include in A′ only the con-

tracts of the form (r1, c, 1) for events En

(
c, {c′j}k

j=1, p, w, {ri}
q1

c
i=1, {s1

i }
q1

c′1
+q0

c′1
−1

i=1 ,
{
{sj

i}
2q̄
i=1

}k

j=2

)
that are realized, the resulting allocation differs from YSP−DA only in that students play-
ing the role of r1 will get (r1, c, 0) instead of (r1, c, 1), students playing the role of p will
be assigned (p, c, 1) instead of (p, c′1, 1), and students playing the role of w will be assigned
(w,c′1, 0) instead of being unassigned. Lemma 5 guarantees that w’s are different across these
events. Hence, this algorithm never decreases the number of assigned students, and with
probability at least L/(2− L), it increases the number of assigned students by a factor of,
at least, L/2λ. Lemmas 6 and 7 provide a similar guarantee for the upward transfers and
funding losers.

Finally, we note that it is possible to initialize the algorithm in polynomial time (e.g.,
by applying the algorithm identified in Lemma 4 n times, once for each college), and that
our algorithm will terminate in polynomial time (indeed, after the initialization, it will run
SP-DA once, and it is well known that the running-time of SP-DA is polynomial).

Remark. Our proof relies only on the probability with which the events from Definition 1
are realized. So long as this probability remains sufficiently large (at least for a large frac-
tion of these events) our proof will go through. Examples include modes of randomization
that restrict substitutes to rank funded positions higher then unfunded positions as well as
modes of randomization with correlation structures as in Kojima and Pathak (2009), where
some schools are more popular than others, or students’ preferences are drawn from het-
erogeneous distributions (e.g., some students prefer economics majors while others prefer
physics).

36



The proofs of Proposition 5, Proposition 6, and Proposition 7 are provided in Supple-
mental Appendix B.
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Appendix B Supplemental Proofs (for Online Publication)

Proof of Theorem 2. We will prove that Theorem 2 holds even if colleges are restricted to offer
no more than one seat under each of the financial terms. Our proof relies on a reduction—
we show that an algorithm that identifies a stable (certainly stable) allocation of maximum
size quickly (in running time polynomial in the size of the input) can also be used to quickly
produce a solution to another problem that is known to be NP-hard. Therefore, identifying
such an algorithm will prove that P = NP.

The NP-hard problem that we reduce is a special version of MAX-SMTI, studied in
Manlove et al. (2002). The description of the problem is as follows. An instance of the re-
stricted stable marriage problem with incomplete lists and ties consists of a set of n men, M, and a
set of n women W = W∼ ∪W�, where men in M and women in W� have strict preferences
over agents on the other side and remaining unmatched, and women in W∼ are indifferent
between two acceptable men and find all other men unacceptable. Given such an instance,
I, a matching is weakly stable if no agent’s assignment is unacceptable and there is no pair of
agents that strictly prefer one another to their assignment. The problem of deciding whether
I admits a stable matching under which all women are matched with men is NP-complete
(Manlove et al., 2002).

Given and instance I =
〈

M, W∼, W�, {�i}i∈M∪W
〉

we define the corresponding Hungarian
college admissions market as follows. The set of students is SI = {si}i∈M∪W∼ , with elements
corresponding to each man and each woman in W∼. The set of colleges CI = {cw}w∈W∼∪W� .
For each w ∈ W�, cw has a single state-funded seat (q1

cw = 1 and q0
cw = 0), while other

colleges have one state-funded seat and one self-funded seat (i.e., for all w ∈ W∼, q1
cw = 1

and q0
cw = 1).

For each w ∈W�, cw ranks students (and the outside option) according to the preferences
of the corresponding woman (sm �cw sm′ iff w prefers m to m′, sm �cw ∅ iff w prefers m to
her outside option, and ∅ �cw sw′ for all w′ ∈ W∼). For each w ∈ W∼, cw has three
acceptable students sw �cw spw �cw s fw where pw and fw are the two men acceptable to
w (ranked according to some arbitrary rule). Furthermore, for each w ∈ W∼, sw’s most
preferred alternative is the state-funded seat in cw followed by a self-funded seat in this
college, with all other alternatives being unacceptable ((sw, cw, 1) �sw (sw, cw, 0) �sw ∅, and
∅ �sw (sw, c, t) for all c 6= cw and all t ∈ {0, 1}).

Finally, for each m ∈ M, sm ranks contracts according to m’s preferences (ranking the
state-funded alternative over self-funded one) except for contracts corresponding to w ∈W∼

where only one of the terms is acceptable (depending on the students ranking on cw’s rank-
ing). Formally, sm’s preferences satisfy the following conditions:

1. for each w ∈ W∼, (sm, cw, 1) �sm ∅ only if sm is ranked second according to�cw , and
(sm, cw, 0) �sm ∅ only if sm is ranked third according to�cw .

2. for each w ∈ W and t such that the contracts (sm, cw, t) is not unacceptable by the first
condition (sm, cw, t) �sm ∅ iff w is acceptable to m.

3. for each w, w′ ∈ W and t, t′ such that the contracts (sm, cw, t) and (sm, cw′ , t′) are not
unacceptable by the first condition, (sm, cw, t) �sm (sm, cw′ , t′) iff m prefers w to w′.

39



Lemma 8. An instance I of the restricted stable marriage problem with incomplete lists and ties
admits a stable matching under which all women are matched with men if and only if the correspond-
ing Hungarian college admissions market admits a stable allocation of cardinality |SI | (i.e., where all
students are assigned to colleges).

Proof. Assume I admits a stable matching µ under which all women are matched with men.
Consider the allocation Y consisting of the contracts

{(
sµ(w), cw, 1

)}
w∈W�

together with the

contracts
{(

sµ(w), cw, tµ(w)

)}
w∈W∼

and
{(

sw, cw, 1− tµ(w)

)}
w∈W∼

, where tµ(w) guarantees

that
(

sµ(w), cw, tµ(w)

)
�sµ(w) ∅ for each w ∈ W∼.30 Then |Y| = |SI | and Y is a (certainly)

stable allocation.
The only non-trivial case to verify is that of potential blocks involving colleges with two

seats (corresponding to women in W∼). This case follows since for each of these colleges
the student involved in

(
sµ(w), cw, tµ(w)

)
�µ(w) ∅ finds matching with the college under the

other financial terms unacceptable. Hence, if the college is assigned its first- and second-
ranked students, the college does not prefer any other allocation that is individually ratio-
nal. Furthermore, if the college is assigned its first- and third-ranked students, then the first
ranked student receives state funding (her most preferred contract), and the only individu-
ally rational allocation that the college prefers would require her to receive a less preferred
alternative (the self-funded seat).

In the other direction, let Y be a (certainly) stable allocation such that |Y| = |SI |. For each
w ∈ W∼ the student sw must be assigned to cw (under some financial terms). This holds
since w ranks sw first, and sw only ranks the contracts with cw as acceptable. Furthermore,
since SI is equal to the number of available seats, all seats are assigned.

The matching ν that assigns w to m if and only if ({sm} × {cw} × T) ∩ Y 6= ∅ is indi-
vidually rational, and it clearly matches every women to a men.31 We claim that it is also
weakly stable. To see this, we note that no w ∈ W∼ can be involved in a blocking pair, as
these women get their (tied) first choice men. But a blocking involving w ∈ W� and m ∈ M
implies that Y is blocked through {(sm, cw, 1)}.

Proposition 8. Finding a maximum-size stable (or certainly stable) allocation in Hungarian college
admissions markets is NP-hard, even when colleges offer no more than one seat under each of the
financial terms (i.e., qt

c ≤ 1 for each c and t).

Proof. Transforming the restricted stable marriage problem with incomplete lists and ties to
the corresponding Hungarian college admissions market clearly requires only a polynomial
running time. An algorithms that finds a maximum-size stable (or certainly stable) alloca-
tion in Hungarian college admissions markets should find a stable allocation that matches
all students if and only if one exists. If the algorithm is guaranteed to output a maximum-
size stable allocation in polynomial time, transforming the original marriage problem and

30Existence of such financial terms is guaranteed since w must be acceptable to µ(w) and vice versa, by the
stability of µ.

31That ν is indeed a matching follows by the feasibility of Y and the fact that in any stable allocation colleges
with more than one seat must be a side to a contracts with a student sw for some w ∈W∼.

40



running the algorithm will give an answer in polynomial time to whether the original mar-
riage problem admits a stable matching under which all women are matched with men (by
Lemma 8). And this problem is NP-complete (Manlove et al., 2002).

This completes the proof of Theorem 2.

Remark. MAX-SMTI is not approximable within a factor of 21/19, unless P = NP
(Halldórsson et al., 2007). Using this fact and the construction used to prove Lemma 8,
one can establish that the maximum-size stable (or certainly stable) allocation in Hungarian
college admissions markets is not approximable within a constant factor 15/14, even when
colleges offer no more than one seat under each of the financial terms (i.e., qt

c ≤ 1 for every
c and t).

Proof of Proposition 5
Lemma 9. Let Y be a stable allocation in a Hungarian college admissions market where all students
are not sensitive to funding. Consider a modified market that is identical except that for each college, c,
quotas are given by q̂0

c = q0
c + q1

c and q̂1
c = 0. Then, the allocation {(s, c, 0) | ∃t ∈ T, s.t. (s, c, t) ∈ Y}

is stable in the modified market.

Proof. The modified market is (effectively) a matching without contracts market with re-
sponsive preferences. Hence, it is sufficient to consider blocking by pairs and violations
of individual rationality (Proposition 1). Individual rationality is guaranteed by the stabil-
ity of Y and students not being sensitive to funding. Similarly, if the matching (allocation)
is blocked by the pair s and c (through {(s, c, 0)}), then Y is blocked through {(s, c, 0)} or
{(s, c, 1)}.

Proof of Proposition 5. By Lemma 9, each stable allocation Y has the same number of students
assigned to each college as the number of students that are assigned to the corresponding
college in a stable matching of a certain matching market without contracts where colleges
preferences are responsive. The statement therefore follows from the rural hospital theorem.

Proof of Proposition 6
Lemma 10. If students rank at most one contract with each college, an allocation is stable if and only
if it corresponds to a stable matching in the related market.

Proof. The “if” direction follows from Theorem 1. For the “only if” direction, note that if
the matching is not individually rational, so is the corresponding allocation. Furthermore, if
an individually rational matching is blocked, it must be blocked by a pair (c, t) and s, such
that s is not matched to (c, 1− t) (by individual rationality) nor to (c, t) (by the definition of
blocking). Therefore, the corresponding allocation is blocked through the contract (s, c, t).

Lemma 11. Let Y be a stable allocation in
〈

S, C,
{
�c,�c, q0

c , q1
c
}

c∈C , {�s}s∈S

〉
, and let B denote

the set of students that consider two contracts with the same college acceptable. Then each s′ ∈ S \ B
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weakly prefers YSP−DA
[〈

S \ B, C,
{
�c,�c, q0

c , q1
c
}

c∈C , {�s}s∈S\B

〉]
to Y, and prefers Y to the al-

location YSR−DA
[〈

S \ B, C,
{
�c,�c, max

{
0, qt

c − |{s ∈ B | (s, c, t) �s ∅}|
}}

c∈C,t∈{0,1} , {�s}s∈S\B

〉]
.

Furthermore, the opposite comparisons hold for colleges that are not ranked by students in B.

Proof. Consider
〈

S \ B, C,
{
�c,�c, max

{
0, qt

c − |{s ∈ B | (s, c, t) �s ∅}|
}}

c∈C,t∈{0,1} , {�s}s∈S\B

〉
,

the market where students in B are removed and the quotas are reduced at contracts they
rank. Y �S\B must be stable in this market (otherwise, Y is not stable). Furthermore, since
students in S \ B do not rank more than one contract with the same college, the allocation
must also be stable in the related matching market (by Lemma 10). Hence, by the consen-
sus property, all students in S \ B prefer the outcome of SP-DA in this market to Y �S\B
to the outcome of SR-DA (and the opposite holds for colleges not ranked by students in
B). Furthermore, by Theorem 2.25 in Roth and Sotomayor (1990), all students in S \ B pre-
fer the outcome of SR-DA in

〈
S \ B, C,

{
�c,�c, q0

c , q1
c
}

c∈C , {�s}s∈S\B

〉
to the outcome of

SR-DA in
〈

S \ B, C,
{
�c,�c, max

{
0, qt

c − |{s ∈ B | (s, c, t) �s ∅}|
}}

c∈C,t∈{0,1} , {�s}s∈S\B

〉
(and the opposite holds for colleges not ranked by students in B).

Lemma 12 (Kojima and Pathak). Consider a matching (without contracts) market and a college c
that is matched with µ(c) under SP-DA. If for any non-empty subset of µ(c), dropping this subset
does not result in an additional offer to c relative to SP-DA, then c is matched with µ(c) also under
SR-DA.

Randomized (ĉ, t̂) Algorithm Building on Lemmas 11 and 12, we present a randomized
algorithm that declares failure with probability higher than the probability that there are
stable allocations Y and Y′ such that Y ∩ S× {ĉ} × {t̂} 6= Y′ ∩ S× {ĉ} × {t̂} (i.e., different
sets of agents are assigned to ĉ under t̂ in different stable allocations). Roughly, the algo-
rithm randomly draws the identities and preferences of students in B (the set defined in
Lemma 11) and fails if |B| is unusually large or if one of its members ranks a contract with ĉ.
If the algorithm doesn’t fail, agents in B are removed and the algorithm proceeds to mimic
the distribution of outcomes of SP-DA, where students preferences are drawn as needed
based on the distribution that conditions on them not being members of B. Next, the algo-
rithm transitions from the outcome of SP-DA in this market, to a market where quotas are
reduced as in Lemma 11. The algorithm declares failure if ĉ receives an offer in the process
(a necessary condition for the assignment of (ĉ, t̂) to change) or if the process induces an
“unusually long" chain of offers.

Step 1. Drawing the set B and their preferences: For each student in S draw preferences
according to the independent mode of randomization. Denote by B the (random) set
of students who rank two contracts with the same college. If a student in B ranks
a contract with ĉ, or if |B| >

(
1 + log2(|C|)

)
· |S| · 8k2/|C| declare failure and stop.

Otherwise, “forget” the preferences of students in S \ B and continue to Step 2.

Step 2. SP-DA excluding B:
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Step 2.1 For each s ∈ S \ B, draw independently and uniformly at random a college from
C, and draw independently and uniformly at random terms from T = {0, 1}with
equal probability for 0 and 1. Have each of these students propose the auxiliary
college (college-terms pair) she drew. Auxiliary colleges accept temporarily the
most preferred subset of students and reject all others.

Step 2.j j>1 If all students in S \ B are temporarily assigned, or have been rejected 2k times,
set Y1 to be the resulting allocation and proceed to Step 3. Otherwise, for each
student that is not temporarily assigned and has not been rejected 2k times, draw
independently and uniformly at random a college in C to which the students did
not apply in a previous step of the algorithm (under any terms), and random
terms from T = {0, 1} with equal probability for 0 and 1. Have each student
propose the auxiliary college she drew. Auxiliary colleges accept temporarily the
most preferred subset of the union of the set of new proposal and the proposals
they temporarily hold and reject all others. Proceed to Step 2.j + 1.

Step 3. from SP-DA excluding B to SP-DA excluding B with reduced quotas) Set Y = Y1.
Let (sm, cm, tm)

2k|B|
m=1 be the set of contracts ranked by students in B. For each m from 1

to 2k|B|:

Step 3.m Reduce qtm
cm by 1 (unless it is already 0). If this does not result in cm violating

its quota under Y, proceed to step 3.m + 1. Otherwise, reject the lowest ranked
student, s, assigned to the auxiliary college (cm, tm), and proceed to Step 3.m.1.

Step 3.m.j Denote by P1 > 0 a parameter (we will specify a value for P1 at a later point in
the proof (see Footnote 32). If j > P1 · log n declare failure and stop. If s has been
rejected 2k times, proceed to step 3.m + 1. Otherwise draw independently and
uniformly at random a college to which the student did not apply in a previous
step of the algorithm, c, and random terms from t ∈ {0, 1} with equal probability
for 0 and 1. If c = ĉ declare failure and stop. Have s propose to the corresponding
auxiliary college, (c, t). The auxiliary college accepts temporarily the most pre-
ferred subset of (Y ∩ (S× {c} × {t})) ∪ {(s, c, t)}, and Y is updated accordingly
to Ch(c,t) (Y ∪ {(s, c, t)}) ∪ (Y \ (S× {c} × {t})). If the auxiliary college rejects
some student (at most one students can be rejected), set s to be this student, and
proceed to Step 3.m.j + 1. Otherwise, proceed to Step 3.m + 1.

Step 3.(2k|B|+1) Set Y2 to be the resulting allocation. proceed to Step 4.

Step 4. Stochastic rejection chains: We note that
∣∣Y ∩ (S× {ĉ} × {t̂})∣∣ ≤ q, and thus this set

has no more than 2q different subsets. For each nonempty subset Z =
{
(si, ĉ, t̂)

}lZ
i=1 of

Y ∩
(
S× {ĉ} × {t̂}

)
:

Step 4.Z Set Y = Y2 and realized preferences to the part that was drawn by the end of
Step 3. Have (ĉ, t̂) drop all students in ZS from its preference list (at most q stu-
dents) and reject them from the college. Set i = b = 1, and proceed as follows:

Step 4.Z.i.b If i = lZ + 1, proceed to the next subset. If b > P1 log n declare failure and stop. If
si has been rejected 2k times, move to step 4.Z.i + 1.1. Otherwise draw indepen-
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dently and uniformly at random a college to which the student did not apply in a
previous step of the algorithm, c, and random terms t ∈ {0, 1} with equal proba-
bility for 0 and 1. If the college drawn is ĉ, declare failure and stop. Otherwise let
the chosen auxiliary college, (c, t), choose from Y ∪ {(si, c, t)}.
If (c, t) does not reject any student, move to Step 4.Z.i + 1. Otherwise, set si to
be the rejected student. Update Y according to the choice of (c, t). Proceed to
Step 4.Z.i.b + 1.

Termination After all possible subsets of Z (fewer than 2q) have been exhausted, stop.

Lemma 13. For any (ĉ, t̂) ∈ Cn × T, the probability that (ĉ, t̂) has a unique assignment in all
stable allocations is bounded below by the probability that the (ĉ, t̂) randomized algorithm terminates
without declaring failure.

Proof. By construction:

• The probability that the algorithm fails in Step 1 is equal to the probability that the set
B has certain properties (regardless of whether or not (ĉ, t̂) has a unique assignment in
all stable allocations).

• The probability that the algorithm fails in Step 3 conditional on not failing in Step 1 is
equal to the probability – conditional on B not having the aforementioned properties
– that reducing the quotas changes the SP-DA assignment of (ĉ, t̂) or leads to long
rejection chains.

• The probability that the algorithm fails in Step 4 conditional on not failing in earlier
step is greater than the probability – conditional on B not having the aforementioned
properties and quota reductions not changing the SP-DA assignment of (ĉ, t̂) or lead-
ing to long rejection chains – that the SP-DA and SR-DA assignments of (ĉ, t̂) under
reduced quotas are equal (using Boole’s inequality and Lemma 12).

The result therefore follows by Lemma 11.

Lemma 14 (Typical Size of B). Let {Γ̃n}∞
n=1 be a regular sequence of markets such that the mode of

randomization is independent, and let B̃n denote the set of students who rank two contract with the
same college. Then the probability that

∣∣B̃n
∣∣ > (

1 + log2(n)
)
× |Sn| × 8k2/n is lower than 1/n2

for sufficiently large n.

Proof. When n > 4k the probability that an agent finds more than one contract with some
college acceptable is

1− 1×
(

1− 1
2n− 1

)
×
(

1− 2
2n− 2

)
× · · · ×

(
1− 2k− 1

2n− (2k− 1)

)
≤ 1−

(
1− 4k

n

)2k

which, by Bernoulli’s inequality, is bounded above by

1−
(

1− 8k2

n

)
=

8k2

n
.
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Since students’ preferences are drawn independently of one another, the events in which
one of them finds more than one contract with the same college acceptable are indepen-
dent. Hence, using a multiplicative Chernoff bound, this implies that the probability that
more than

(
1 + log2(n)

)
× |Sn| × 8k2/n students find more than one contract with the same

college acceptable is lower than

exp
(
− log2(n) · 4k2 · |Sn| /n

)
≤ exp

(
− log2(n) · 4λk2

)
,

and
lim

n→∞
n2 · exp

(
− log2(n) · 4λk2

)
= 0.

Lemma 15. Given a regular sequence of markets, there exists n′ and M > 0 such that for all n > n′

and any college ĉ ∈ Cn, the probability that a contract with ĉ is ranked by any student in Bn is
bounded above by M log2(n)/n.

Proof. Unless B is larger than
(

1 + log2(n)
)
· |Sn| · 8k2/n (which, for large n, occurs with

probability lower than 1/n2 by Lemma 14) the number of contracts ranked by agents in B
is lower than 2k ·

(
1 + log2(n)

)
· |Sn| · 8k2/n. Each of these contracts has probability of 1/n

to be with ĉ. The result follows by Boole’s inequality and the fact that log2(n)/n > 1/n2 for
large n.

The Effect of Quotas Reduction on SP-DA

Lemma 16 (Immorlica and Mahdian). Given a regular sequence of markets, there exists α >
0 such that for any n, the probability that more than αn colleges in Cn are not acceptable to any
student in S \ B is greater than 1− 1/n2 under both the independent and the substitutes modes of
randomization.

Proof. The probability that a particular college is ranked by some student is smaller than
1 − (1 − k/n)n/λ. Therefore, the expected number of colleges ranked by some student is
lower than M(n) := n

(
1− (1− k/n)n/λ

)
≥ n (1− exp(−k/λ)). The indicators of these

events meet the conditions of Theorem 1.1 of Impagliazzo and Kabanets (2010) (they are
negatively correlated), and therefore the probability that more than (1+ ε)M(n) of them are
realized is bounded above by exp(−2nε2).

Proof of Proposition 6. By Lemma 13, the probability that the Randomized (ĉ, t̂) Algorithm
fails is greater than the probability with which Y∩

(
S× {ĉ} × {t̂}

)
varies for different choices

of a stable allocation Y. By Lemmas 14 and 15 the probability that it fails in Step 1 is lower
than A · log2(n)/n for sufficiently large A > 0. Conditional on not failing in Step 1 the
arguments of Immorlica and Mahdian (and Kojima and Pathak) show that the probability
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that the algorithm fails is bounded above by A′ · log(n)/n for sufficiently large A′ > 0.32

Furthermore, the probability that a student has multiple stable assignments is lower than
the probability that she ranks a contract with a college that has multiple stable assignments,
which is lower than 2k times the probability that a college has multiple stable assignments.

Finally, let X(c,t) denote the random variable that the set of students assigned to college c
under t differs across stable allocations. By the discussion above, the exists ∆ > 0 such that
E
[
∑(c,t)∈C×T X(c,t)

]
< ∆ log2 n. Hence, by Markov’s inequality

Pr

 ∑
(c,t)∈C×T

X(c,t) > ∆
√

n log2 n

 <
1√
n

.

The proof for students is completely analogous.

Remark. Our proof continues to hold under conditions that guarantee that Immorlica and
Mahdian’s short rejection chains argument remains valid. Examples include the variant of
the independent mode of randomization where students systematically prefer state-funded
seats to self-funded seats in the same program as well as modes where students’ preferences
are drawn from heterogeneous distributions (e.g., some students prefer economics majors
while others prefer physics).

Proof of Proposition 7
Sketch of Proof of Proposition 7. First, relying on Proposition 2, we consider the related mar-
kets. Second, we note that under the independent mode of randomization, the related mar-
kets meet the conditions of Kojima and Pathak (2009).

Next, we consider the substitues mode of randomization. This case is slightly more com-
plicated. The added complexity arises from the fact that it is likely that when an auxiliary
college rejects a student, this student will displace another student at the “sibling” auxiliary
college, who will go on to propose to the auxiliary college–resulting in an additional pro-
posal. We note, however, that Lemma 12 can be strengthened, to require that the additional
offer to the (auxiliary) college comes from a student that is preferred to all rejected students.

32This argument is now standard in the literature (e.g. Immorlica and Mahdian, 2005; Kojima and Pathak,
2009; Kojima et al., 2013; Ashlagi et al., 2014) and so we omit it for brevity. To summarize: by Lemma 16
there exists excess capacity in more than αn colleges with probability greater than 1− 1/n2. The probability
of failure due to long rejection chain is bounded above by the sum of the probability that there is no such
excess capacity and the probability that a geometric random variable reaches values larger than P1 log(n) for
a constant P1 > 0 (conditional on not stopping, the probability of a chain to stop in the next step continues
to be at least α). The probability of a geometric random variable to exceed log(n)/α steps is

(1− α)log(n)/α =
(
((1− α))1/α

)log(n)
<

1
e

log(n)
=

1
n

In the algorithm, we choose the parameter P1 ≥ 1/α, allowing us to invoke this bound. Conditional on no
failure due to a long rejection chain, the probability of failure (since an offer to c was made) is lower than
2P1 log(n)/n.
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Furthermore, students who get displaced from the “sibling” auxiliary college by strategi-
cally rejected students are not ranked sufficiently high to meet this condition themselves (as
otherwise, they would not be displaced) and indirect chains of rejection are unlikely as in the
argument of Immorlica and Mahdian (2005) and Kojima and Pathak (2009) (see Lemma 16
and Footnote 32 for details of the argument).

Remark. The proof extends to modes of randomization with correlation structures as in
Kojima and Pathak (2009), where some schools are more popular than others, or students’
preferences are drawn from heterogeneous distributions (e.g., some students prefer eco-
nomics majors while others prefer physics). The proof for modes of randomization that
restrict independent or substitutes to rank funded positions higher then unfunded positions
is simpler, as it rules out the complication of short rejection cycles discussed above.
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Appendix C Supplemental Tables (for Online Publication)

Section C.1 compares the realized and the benchmark assignments. Section C.2 presents
additional summary statistics.

C.1 Data
This Appendix presents the number of applicants assigned in 2007 and in our benchmark
assignment (Table C1).

Table C1: Realized and benchmark assignments

Realized Benchmark
(1) (2)

Assigned to a contract 81,563 84,130
Assigned to a state-funded contract 48,726 48,725
Assigned to a self-funded contract 32,837 35,405
Notes: The table presents the number of applicants assigned under
each of the financial terms in the realized assignment in 2007 (col-
umn (1)) and in our benchmark assignment (column (2)).

C.2 Summary Statistics
This appendix presents additional summary statistics. Table C2 summarizes the means and
standard deviations of the applicants’ background characteristics. Table C3 provides sum-
mary statistics on the characteristics of applicants’ ROLs by the type of the settlement where
they reside – an additional proxy for socioeconomic status (cf. Table 2).

Tables C4 and C5 present the coefficients of a linear regression of ROL characteristics
on disadvantaged status and 11th-grade GPA on the sample of applicants. We find that
disadvantaged applicants are more (less) likely to rank state-funded (self-funded) contracts
exclusively in their ROLs, and they are less likely to rank both contracts with the same
study program consecutively. We also find that these differences cannot be explained by
the differences in applicants’ academic achievement, and thus, by the differences in their
admission chances.

Next, we consider three alternative proxies for socioeconomic status: per-capita annual
gross income, NABC-based SES index, and the type of the settlement where applicants re-
side (capital, county capital, town, and village). Tables C6 and C7 show that conditional on
academic achievement, applicants of higher socioeconomic status are more likely to rank at
least one self-funded contract in their ROL and they are more likely to rank two contracts
with the same study program consecutively.
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Table C2: Summary statistics on applicants’ characteristics

Mean SD N
(1) (2) (3)

Disadvantaged 0.05 0.21 108,854
Per-capita annual gross income (1000 USD, 2007 prices) 9.90 2.30 106,934
NABC-based SES index 0.22 0.37 84,455
Capital 0.20 0.40 106,934
County capital 0.21 0.41 106,934
Town 0.33 0.47 106,934
Village 0.26 0.44 106,934
11th-grade GPA (1–5) 3.63 0.84 85,811
Female 0.57 0.50 108,854
Number of alternatives in ROL 3.71 2.21 108,854
Number of programs in ROL (observed) 3.01 1.30 108,854
Notes: The table reports mean values and standard deviations of applicant charac-
teristics. Disadvantaged status is an indicator for claiming priority points for disad-
vantaged status. 11th-grade GPA is the average grades in mathematics, history, and
Hungarian grammar and literature. Applicants’ settlement of residence is missing
for 1, 920 applicants, NABC-based SES index is missing for 24, 399 applicants, and
11th-grade GPA is missing for 23,043 applicants.
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Table C3: Summary statistics on applicants’ ROLs: Applicants’ residence

All
applicants

(%)
Capital (%) County town (%) Town (%) Village (%)

(1) (2) (3) (4) (5)
A. Preference for funding
State-funded contract exclusively 51.4 37.1 52.5 54.3 58.2
Self-funded contract exclusively 18.5 24.0 18.8 17.5 15.2
State- and self-funded contracts 30.1 38.9 28.7 28.2 26.6
Same study program consecutively 15.5 20.5 14.6 14.3 13.5
Same study program consecutively on the top of the ROL 11.6 15.0 11.3 10.7 10.2

B. Preference for study characteristics
Single program location 49.4 64.5 50.0 44.4 43.5
Single university 35.0 28.8 43.2 33.7 34.7
Single faculty 26.3 24.4 30.4 25.2 25.8
Single field of study 54.9 58.9 55.2 54.1 52.4
Single major 29.6 33.5 30.5 28.7 26.9
# of applicants 108,854 21,731 22,381 35,290 27,532
Notes: The table reports summary statistics on applicants’ ROL. Panel A focuses on preference for funding. Specifically, Panel A shows
shows the share of applicants who rank state-funded (self-funded) contracts exclusively, the share of students who rank state-funded
and self-funded contracts as well, and the share of applicants who rank the same study program with state-funding and self-funding
consecutively, and who rank the same study program with state-funding and self-funding consecutively on the top of the ROL. Panel
B focuses on preference for program characteristics. Specifically, Panel B shows the share of applicants who rank exclusively contracts
that are in the same settlement (single program location), at a single university (single university), and at a single faculty of a university
(single university), and the share of applicants who rank exclusively contracts in a single field of study, and in a single major. Column
(1) presents these shares for all applicants, and columns (2)–(5) report these shares for applicants residing in the capital, county towns,
towns, and villages, respectively.
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Table C4: Socioeconomic status, academic achievement, and ROL characteristics

Dependent variable Ranked state-funded contract Ranked self-funded contract
exclusively exclusively

(1) (2) (3) (4) (5) (6)
Disadvantaged 0.294∗∗∗ 0.277∗∗∗ -0.172∗∗∗ -0.152∗∗∗

(0.006) (0.006) (0.002) (0.002)
11th-grade GPA (standardized) 0.079∗∗∗ 0.079∗∗∗ -0.032∗∗∗ -0.032∗∗∗

(0.002) (0.002) (0.001) (0.001)
Mean outcome (non-disadvd.) 0.500 0.500 0.500 0.192 0.192 0.192
R-squared 0.015 0.035 0.049 0.009 0.047 0.054
Notes: The table presents the coefficient of linear regressions of ROL characteristics (such as whether an
applicant ranked state-funded contracts exclusively on her ROL (columns (1)–(3)) and whether an appli-
cant ranked self-funded contracts exclusively on her ROL (columns (4)–(6))) on socioeconomic status and
academic achievement. The sample includes 108, 854 applicants. The regressions include indicators for
missing values of standardized 11th-grade GPA (23, 043 applicants). Robust standard errors are in paren-
theses.
***: p<0.01, **: p<0.05, *: p<0.1.
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Table C5: Socioeconomic status, academic achievement, and ROL characteristics (2)

Dependent variable Same study program Same study program consecutively
consecutively on the top of the ROL

(1) (2) (3) (4) (5) (6)
Disadvantaged -0.075∗∗∗ -0.075∗∗∗ -0.057∗∗∗ -0.056∗∗∗

(0.004) (0.004) (0.004) (0.004)
11th-grade GPA (standardized) -0.034∗∗∗ -0.034∗∗∗ -0.027∗∗∗ -0.027∗∗∗

(0.001) (0.001) (0.001) (0.001)
Mean outcome (non-disadvd.) 0.158 0.158 0.158 0.119 0.119 0.119
R-squared 0.002 0.007 0.009 0.001 0.006 0.007
Notes: The table presents the coefficient of linear regressions of ROL characteristics (such as whether an
applicant ranked the same study program consecutively (columns (1)–(3)) and whether an applicant ranked
the same study program consecutively on the top of the ROL (columns (4)–(6))) on socioeconomic status
and academic achievement. The sample includes 108, 854 applicants. The regressions include indicators
for missing values of standardized 11th-grade GPA (23, 043 applicants). Robust standard errors are in
parentheses.
***: p<0.01, **: p<0.05, *: p<0.1.
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Table C6: Socioeconomic status, academic achievement, and ROL characteristics: Additional specifications

Dependent variable Ranked state-funded contract Ranked self-funded contract
exclusively exclusively

(1) (2) (3) (4) (5) (6)
Per-capita annual gross income (1000 USD, 2007 prices) -0.028∗∗∗ 0.013∗∗∗

(0.001) (0.001)
NABC-based SES index -0.098∗∗∗ -0.010∗∗∗

(0.005) (0.003)
Capital -0.208∗∗∗ 0.078∗∗∗

(0.002) (0.002)
County capital -0.061∗∗∗ 0.035∗∗∗

(0.003) (0.003)
Town -0.043∗∗∗ 0.023∗∗∗

(0.003) (0.003)
11th-grade GPA (standardized) 0.081∗∗∗ 0.077∗∗∗ 0.081∗∗∗ -0.033∗∗∗ -0.017∗∗∗ -0.033∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
R-squared 0.057 0.088 0.056 0.055 0.145 0.053
Notes: The table presents the coefficient of linear regressions of ROL characteristics (such as whether an applicant ranked state-funded
contracts exclusively on her ROL (columns (1)–(3)) and whether an applicant ranked self-funded contracts exclusively on her ROL
(columns (4)–(6))) on socioeconomic status and academic achievement. The sample includes 108, 854 applicants. The regressions
include indicators for missing values of standardized 11th-grade GPA (23, 043 applicants), per-capita annual gross income (1, 920
applicants), NABC-based SES index (24, 399 applicants), and residence (1, 920 applicants). The omitted category in columns (3) and
(6) is village. Robust standard errors are in parentheses.
***: p<0.01, **: p<0.05, *: p<0.1.
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Table C7: Socioeconomic status, academic achievement, and ROL characteristics: Additional specifications (2)

Dependent variable Same study program Same study program consecutively
consecutively on the top of the ROL

(1) (2) (3) (4) (5) (6)
Per-capita annual gross income (1000 USD, 2007 prices) 0.009∗∗∗ 0.009∗∗∗

(0.000) (0.000)
NABC-based SES index 0.061∗∗∗ 0.044∗∗∗

(0.004) (0.003)
Capital 0.073∗∗∗ 0.050∗∗∗

(0.004) (0.004)
County capital 0.014∗∗∗ 0.014∗∗∗

(0.003) (0.003)
Town 0.010∗∗∗ 0.007∗∗∗

(0.002) (0.002)
11th-grade GPA (standardized) -0.035∗∗∗ -0.041∗∗∗ -0.035∗∗∗ -0.028∗∗∗ -0.031∗∗∗ -0.028∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.011 0.010 0.013 0.010 0.008 0.009
Notes: The table presents the coefficient of linear regressions of ROL characteristics (such as whether an applicant ranked the same
study program consecutively (columns (1)–(3)) and whether an applicant ranked the same study program consecutively on the
top of the ROL (columns (4)–(6))) on socioeconomic status and academic achievement. The sample includes 108, 854 applicants. The
regressions include indicators for missing values of standardized 11th-grade GPA (23, 043 applicants), per-capita annual gross income
(1, 920 applicants), NABC-based SES index (24, 399 applicants), and residence (1, 920 applicants). The omitted category in columns
(3) and (6) is village. Robust standard errors are in parentheses.
***: p<0.01, **: p<0.05, *: p<0.1.
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Table C8: Program characteristics by excess self-funded capacity at the benchmark

Programs with no excess Programs with excess Programs with excess
self-funded capacity self-funded capacity self-funded capacity (weighted)
(1) (2) (3) (4) (5) (6)

Periphery 0.59 (0.49) 0.85 (0.36) 0.84 (0.37)
Full-time 0.90 (0.30) 0.72 (0.45) 0.71 (0.45)
Field: economics and business 0.09 (0.28) 0.10 (0.30) 0.20 (0.40)
Field: humanities 0.15 (0.36) 0.16 (0.37) 0.11 (0.32)
Field: engineering 0.05 (0.21) 0.09 (0.29) 0.09 (0.28)
Field: natural science 0.05 (0.21) 0.05 (0.21) 0.02 (0.15)
Field: social science 0.08 (0.27) 0.09 (0.29) 0.09 (0.29)
State-funded priority-score cutoff (scale: 0–144) 104.65 (21.17) 100.37 (20.96) 102.39 (20.97)
Excess self-funded seats per program 0.00 (0.00) 29.53 (33.27) 29.53 (33.27)
# number of programs 494 - 941 - 941 -
Notes: The table presents means and standard deviations of various characteristics of programs with and without excess self-funded capacity
at the benchmark. Columns (1)–(4) use equal weights, while columns (5)–(6) weight programs by the number of excess self-funded seats at
the benchmark. Standard deviations are in parentheses.55



Appendix D Exercising Market Power More Broadly and More
Narrowly

This appendix expands our empirical analysis in two directions. First, we assess the conse-
quences of being able to detect only a subset of students over which market power is applied
by the preference flip algorithm. Second, we present alternate algorithms that apply market
power more broadly and analyze their consequences.

D.1 Exercising Market Power More Narrowly
We consider the robustness of our results on the preference flip algorithm to cases where
market power is applied more narrowly. Specifically, we apply market power only over a
subset of applicants and rule out the possibility to apply market power over other appli-
cants even if they rank two contracts with the same program consecutively. This analysis is
motivated by the possibility that information frictions prevent the designer from identifying
the entire set A (from the description of the preference flip algorithm).

Appendix Table D1 presents the number of assigned applicants when market power is
applied more narrowly, and the increase in the number of assigned applicants relative to
the benchmark SR-DA assignment. We find that the increase in the number of assigned
applicants is roughly linear in the fraction of applicants over which market power can be
applied.

Table D1: Narrow market power

Fraction subject to market power (%) Assigned under preference flip Increase relative to SR-DA (%)
(1) (2) (3)
100 85,688 1.9
90 85,538 1.7
80 85,391 1.5
70 85,236 1.3
60 85,079 1.1
50 84,929 0.9
40 84,774 0.8
30 84,609 0.6
20 84,454 0.4
10 84,293 0.2

Notes: The table presents the number of assigned applicants under the preference flip algorithm, when
market power is applied only on a subset of applicants. In each row, we consider a fraction of applicants
over which market power can be applied (from 10 to 100 percent), and rule out the possibility to apply
market power over other applicants even if they rank two contracts with the same program consecu-
tively. We present the average result over 50 random draws of subsets of this size. Column 3 presents
the increase in the number of assigned students relative to the benchmark (84,130).

D.2 Exercising Market Power More Broadly
In this section, we present two additional stable algorithms that can be interpreted as apply-
ing market power more broadly. We then repeat the analysis from the main text using these
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algorithms instead of the Preferences Flip Algorithm.

Greedy Reject Algorithm Initialize a set B′ ⊆ B, where B is the set of student–college
pairs such that the student is assigned to a state-funded seat in the program under SP-DA.
For each pair in B′, remove from the student’s initial ROL the state-funded contract with the
college (the student’s assignment) and run SP-DA on the resulting problem. If the result-
ing allocation is certainly stable (with respect to original preferences), stop and output the
resulting allocation. Otherwise, remove some pairs from B′ and repeat the process.

Combined Algorithm Initialize sets A′ ⊆ A and B′ ⊆ B. For each pair in A′, flip the order
of the contracts with the college in the student’s original ROL, so that the state-funded con-
tract appears immediately after the self-funded contract. For each pair in B′, remove from
the student’s initial ROL the state-funded contract with the college (the student’s assign-
ment). Run SP-DA on the resulting problem. If the resulting allocation is certainly stable
(with respect to original preferences), stop and output the resulting allocation. Otherwise,
remove some pairs from A′ or from B′ and repeat the process.

Proposition 9. For any initial set(s) B′ ⊆ B (and A′ ⊆ A) and any rule regarding the choice
of elements to remove from B′ (and A′), the greedy reject (combined) algorithm results in a stable
allocation. Furthermore, the resulting allocation may not allocate funding based on merit.

Proof. The proof is identical to the proof of Proposition 4 and therefore omitted.

We now repeat the analysis from the main text using the greedy reject algorithm and
the combined algorithm instead of the preference flip algorithm. Appendix Table D2 com-
pares the outcomes of the greedy reject and the combined algorithms to the SR-DA bench-
mark. Appendix Tables D3 and D4 compare the characteristics of winners to losers under
the greedy reject algorithm and the combined algorithm, respectively. Appendix Tables D5
and D6 investigate geographic mobility under the greedy reject algorithm and the combined
algorithm, respectively. The results are qualitatively similar to those from the main text, but
their magnitudes are slightly larger.
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Table D2: Winners, losers, and the number of assigned applicants: Greedy reject and
combined algorithms

Benchmark Greedy reject Combined
SR-DA SP-DA algorithm algorithm

(1) (2) (3) (4)
A. Number of assigned applicants
Assigned to a contract 84,130 84,130 85,575 85,847
Assigned to a state-funded contract 48,725 48,725 48,710 48,706
Assigned to a self-funded contract 35,405 35,405 36,865 37,141
Assigned to a self-funded, full-time contract 13,321 13,321 14,410 14,565

B. Winners 8 5,056 5,283
– Newly assigned 0 1,969 2,346
– New program 8 2,168 2,498
– Same program, preferred financial terms 0 919 439

C. Losers 0 4,570 4,734
– Newly unassigned 0 524 629
– New program 0 645 762
– Same program, less preferred financial terms 0 3,401 3,343
Notes: The table presents the number of assigned applicants under various stable assignments (Panel
A). Panels B and C describe the number of winners and losers from changing the benchmark SR-DA
to SP-DA and to our alternate algorithms. An applicant is a winner if she is assigned to a contract
she ranked higher than her contract in the benchmark assignment. An applicant is a loser if she is
assigned to a contract she ranked lower than her assigned contract in the benchmark assignment
or if she becomes unassigned. Column (1) shows the benchmark assignment. Column (2) presents
the SP-DA assignment. Column (3) presents the greedy reject algorithm assignment and column (4)
presents the combined algorithm assignment.

58



Table D3: Characteristics of winners and losers: Greedy reject algorithm

Winners Losers p-values: (1)=(2)
(1) (2) (3)

Disadvantaged 0.057 0.026 0.000
Per-capita annual gross income (1000 USD, 2007 prices) 9.735 10.385 0.000
NABC-based SES index 0.180 0.306 0.000
Capital 0.188 0.277 0.000
County capital 0.192 0.217 0.003
Town 0.329 0.298 0.001
Village 0.291 0.208 0.000
11th-grade GPA (1–5) 3.473 3.704 0.000
Female 0.562 0.553 0.355
Number of applicants 5,056 4,570 9,626
Notes: The table reports the mean values of characteristics of winners and losers from changing
the benchmark SR-DA to the greedy reject algorithm. An applicant is a winner if she is assigned
to a contract she ranked higher than her benchmark assignment. An applicant is a loser if she is
assigned to a contract she ranked lower than her assigned contract in the benchmark assignment or
if she becomes unassigned. Column (3) presents p-values for the equality of mean characteristics of
winners and losers.
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Table D4: Characteristics of winners and losers: Combined algorithm

Winners Losers p-values: (1)=(2)
(1) (2) (3)

Disadvantaged 0.061 0.026 0.000
Per-capita annual gross income (1000 USD, 2007 prices) 9.718 10.413 0.000
NABC-based SES index 0.177 0.305 0.000
Capital 0.183 0.282 0.000
County capital 0.191 0.214 0.005
Town 0.331 0.297 0.000
Village 0.295 0.207 0.000
11th-grade GPA (1–5) 3.483 3.689 0.000
Female 0.570 0.556 0.160
Number of applicants 5,283 4,734 10,017
Notes: The table reports the mean values of characteristics of winners and losers from changing the
benchmark SR-DA to the combined algorithm. An applicant is a winner if she is assigned to a con-
tract she ranked higher than her benchmark assignment. An applicant is a loser if she is assigned to a
contract she ranked lower than her assigned contract in the benchmark assignment or if she becomes
unassigned. Column (3) presents p-values for the equality of mean characteristics of winners and
losers.
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Table D5: Geographic mobility: Greedy reject algorithm

Mover Assigned to periphery Moved to capital
SR-DA GRA SR-DA GRA SR-DA GRA

(1) (2) (3) (4) (5) (6)
A. Total
All assigned applicants 51,221 52,249 47,845 48,876 22,444 22,804

B. Winners
Newly assigned (N= 1,969) – 1,249 – 1,362 – 402
New program (N= 2,168) 1,379 1,415 1,323 1,147 521 660

C. Losers
Newly unassigned (N= 524) 279 – 226 – 143 –
New program (N= 645) 348 370 256 327 191 153
Notes: The table presents the number of movers (i.e., applicants whose assigned study program is not
located in the county where they reside), of applicants assigned to the periphery (i.e., not to the capital),
and of applicants who moved to the capital (i.e., applicants who get assigned to a study program in the
capital but do not reside there) under the greedy reject algorithm (GRA) and in the benchmark SR-DA
assignments. Panel A presents the total number of applicants with these characteristics. Panels B and C
focus on winners and losers who are assigned to a different study program.
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Table D6: Geographic mobility: Combined algorithm

Mover Assigned to periphery Moved to capital
SR-DA CA SR-DA CA SR-DA CA

(1) (2) (3) (4) (5) (6)
A. Total
All assigned applicants 51,221 52,415 47,845 49,073 22,444 22,851

B. Winners
Newly assigned (N= 2,346) – 1,463 – 1,620 – 472
New program (N= 2,498) 1,582 1,624 1,526 1,316 602 769

C. Losers
Newly unassigned (N= 629) 341 – 265 – 183 –
New program (N= 762) 419 449 294 377 232 183
Notes: The table presents the number of movers (i.e., applicants whose assigned study program is not
located in the county where they reside), of applicants assigned to the periphery (i.e., not to the capital),
and of applicants who moved to the capital (i.e., applicants who get assigned to a study program in
the capital but do not reside there) under the combined algorithm and in the benchmark SR-DA assign-
ments. Panel A presents the total number of applicants with these characteristics. Panels B and C focus
on winners and losers who are assigned to a different study program.
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Appendix E Robustness Analysis (for Online Publication)

This Appendix shows that our empirical findings are robust to the way we handle minor
inconsistencies in our data. Our data contain 3,686 applicants (3.4 percent of all applicants)
whose reported assignment and reported priority scores are inconsistent with stability (their
reported priority score does not exceed the priority-score cutoff of their reported assign-
ment, or there is an alternative in their ROL from which they are rejected even though their
reported priority score exceeds the priority-score cutoff of this alternative). These incon-
sistencies largely stem from applicants having a reported priority score of zero. Our main
approach, which is presented in the text, holds the assignment of applicants with such incon-
sistencies fixed to their reported assignment, and makes the corresponding seats unavailable
to others.

In this appendix, we consider two alternative approaches to verify that this issue does
not drive our empirical findings:

• Approach 1: We hold the assignment of applicants with inconsistencies fixed to their
reported assignment, but we keep the corresponding seats available to others (i.e., we
do not reduce the corresponding quotas)

• Approach 2: We do not hold the assignment of applicants with inconsistencies fixed,
and we keep the corresponding seats available to others.

Approach 1 changes the SR-DA (benchmark) assignment of 4,439 applicants and in-
creases the number of assigned applicants in the benchmark by 1,989 relative to our main
approach. Approach 2 changes the SR-DA (benchmark) assignment of 6,052 applicants and
increases the number of assigned applicants in the benchmark by 162 relative to our main
approach. In spite of these changes, Figure E1 shows that our main findings continue to
hold.

Panel A of Figure E1 presents the difference between the number of assigned applicants
under the preference flip algorithm and under SR-DA. In the main text, this corresponds to
the difference between column (3) and column (1) in Panel A of Table 3. Panel B presents the
number of winners from changing the benchmark to the preference flip algorithm. In the
main text, this corresponds to column (3) in Panel B of Table 3. Panel C presents the number
of losers from changing the benchmark to the preference flip algorithm. In the main text,
this corresponds to column (3) in Panel C of Table 3. Since the numbers in each of the panels
are almost identical, we conclude that our main findings continue to hold.
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Figure E1: Winners, losers, and the number of assigned applicants: Robustness

C. Losers

B. Winners

A. Change in the number of assigned applicants (Preference Flip Algorithm vs. SR−DA)
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New program
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Notes: This figure studies the robustness of our empirical findings to the way we handle minor in-
consistencies in our data. Panel A presents the difference between the number of assigned applicants
under the preference flip algorithm and under SR-DA. In the main text (baseline), this corresponds
to the difference between column (3) and column (1) in Panel A of Table 3. Panel B presents the num-
ber of winners from changing the benchmark to the preference flip algorithm. In the main text, this
corresponds to column (3) in Panel B of Table 3. Panel C presents the number of losers from changing
the benchmark to the preference flip algorithm. In the main text, this corresponds to column (3) in
Panel C of Table 3. The baseline corresponds to the analysis in the main text.
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Appendix F Variable Description (for Online Publication)

This appendix describes the construction of variables inTable C2.

• Disadvantaged status: Applicants receive priority points for having a low socioeco-
nomic background. Our administrative data report these priority points. If an appli-
cant received priority points for this reason in any of the alternatives in her ROL, we
label this applicant as disadvantaged. Source: Administrative data on college admis-
sions.

• NABC-based SES index: First, we compute the NABC-based SES index for each sur-
vey respondent between 2008 and 2012 (5 years) in grade 10. We then compute the
high-school-specific means over the 2008–2012 period. Finally, we merge the high-
school-specific NABC-based SES index with the applicants using their high-school
identifier. The high-school identifier is missing for 15,521 applicants. Source: National
Assessment of Basic Competencies (NABC).

• Per-capita annual gross income: Settlement-level income per population. Applicants
come from 2,804 different settlements. Average exchange rate in 2007: 183HUF/USD.
Source: T-STAR dataset (http://adatbank.krtk.mta.hu/adatbazisok___tstar)

• Capital, county capital, town, village: Dummy variables for the type of settlement
where the applicants reside. Source: Administrative data on college admissions.

• 11th-grade GPA: Average grade in mathematics, Hungarian grammar and literature,
and history in grade 11. Source: Administrative data on college admissions.

• Female: Dummy variable for being female. Source: Administrative data on college
admissions.

• Number of alternatives in ROL: Our administrative data include information on the
number of alternatives in each applicant’s ROL. Source: Administrative data on college
admissions.

• Number of programs in ROL (observed): Our administrative data report the first 6
alternatives in an applicant’s ROL as well as the applicant’s realized assignment, in
case it was ranked lower. We compute the number of programs in an applicant’s ROL
based on this information. Source: Administrative data on college admissions.
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Appendix G Evidence from the Israeli Psychology Master’s
Match (for Online Publication)

In this Appendix, we evaluate our theoretical predictions using data from the Israeli Psy-
chology Master’s Match (IPMM). In this market, unlike in Hungary, applicants are not het-
erogeneous in the sensitivity to financial terms. Consistent with our theory, we find that
the preference flip algorithm does not increase the number of applicants admitted to college
relative to the outcome of SP-DA.

G.1 Background and Data
We use data from the 2014 and 2015 rounds of the IPMM. In each of these years, there are
approximately 1,000 applicants, of which approximately 600 are assigned.

Several departments offer a limited number of no-strings-attached scholarships to se-
lected students. In 2014, 10 programs in 3 departments offered admission under multiple
financial terms. The number increased to 15 programs in 4 departments in 2015. Funding
levels ranged from approximately $2,000 a year to approximately $20,000 a year. The num-
ber of available scholarships was 25 in 2014 and 36 in 2015. The centralized clearinghouse
uses a version of SP-DA which allows programs to offer contracts with multiple financial
terms, and allows applicants to rank these alternatives separately.33

G.2 The Distribution of Applicants’ Rank-Order Lists
Applicants’ ROLs include 4.32 contracts on average (SD=4.14). About 37.2% of the ROLs
include at least one contract with a program that offered admission under multiple financial
terms. Of these, only 3.4% include only the funded contract in some program but not the
unfunded contract (cf. Table 2).

Among the ROLs that include both a funded and an unfunded contract with the same
program, more than 90% ranked the funded contract first. Among these ROLs, 82.6% ranked
both contracts consecutively, and the mean number of contracts ranked between a funded
contract and the corresponding unfunded contract was 0.34.

In summary, an overwhelming majority of applicants in the IPMM are not sensitive to
financial terms.

G.3 The Preference Flip Allocation
We next compare the stable allocations resulting from SP-DA and from the preference flip
algorithm.34 We implement the preference flip algorithm initializing A′ = A and with mul-
tiple rules of removal: in addition to the rule used in the main analysis, we also remove the
lowest-ranked student (instead of the highest-ranked student), and furthermore we use 100

33While colleges’ preferences in the IPMM are more complex than in Hungarian college admissions (Hassidim
et al., 2017b), they meets the hidden substitutes condition of Hatfield and Kominers (2015) and so SP-DA is
stable and strategyproof.

34The proof that the preference flip algorithm results in a stable allocation continues to hold in the more general
preference structure of the IPMM (since SP-DA continues to be stable).
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randomly generated rules of removal. Consistent with Proposition 5, none of these imple-
mentations result in an increase in the number of assigned students, and the largest number
of affected students in 4.
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