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Abstract

Stability and “no justified envy” are used almost synonymously in the

matching theory literature. However, they are conceptually different and

have logically separate properties. We generalize the definition of justi-

fied envy to environments with arbitrary school preferences, feasibility con-

straints, and contracts, and show that stable allocations may admit justified

envy. When choice functions are substitutable, the outcome of the deferred

acceptance algorithm is both stable and admits no justified envy.
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1 Introduction

Stability and “no justified envy” are used almost synonymously in the matching

theory literature. However, they have different logical meanings, and they reflect

different concerns of market designers. Stability is defined as the property that

no coalition can profitably deviate from a matching (Gale and Shapley, 1962).

This definition is motivated by the concern that following a centralized matching

process, some agents may deviate together, thus hindering the implementation of

the intended outcome. Stability is widely considered a key determinant of the

success or failure of a centralized clearinghouse (Roth, 1990).

The concept of no justified envy was introduced by Abdulkadiroğlu and Sönmez

(2003) and is akin to a fairness condition proposed by Balinski and Sönmez (1999).

Justified envy arises when a single agent is convinced she is prioritized over another

agent, and prefers the outcome of that other agent to her own. Consider, for

example, a public-school seat-allocation scenario. Student i is prioritized over

student j at school s (e.g., because she lives closer to the school, and schools

prioritize students according to proximity). If j is assigned to s, while i is assigned

to a school she likes less, i experiences justified envy. In this case, it may be unlikely

that student i will deviate together with public school s, but it is not unlikely that

she will file an appeal or even argue her case in court.1

Despite these different motivations, stability and no justified envy are some-

times used interchangeably.2 In some situations they indeed go hand in hand. In

the context of school choice, where schools all have responsive preferences—such

as those described by a capacity and a ranking of students—Abdulkadiroğlu and

Sönmez (2003) show that a stable allocation admits no justified envy. Conversely,

an individually rational and non-wasteful matching that admits no justified envy is

1For a recent case ruling on a similar issue regarding the school-choice system in Amsterdam,

see: http://uitspraken.rechtspraak.nl/inziendocument?id=ECLI:NL:RBAMS:2015:4085&

(in Dutch, retrieved February 3, 2020).
2As an example, consider Abdulkadiroğlu et al. (2020) and Dogan and Ehlers (forthcoming)

who study the same setting and describe the same property under different labels (justified-envy

minimal and minimal instability, respectively).
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stable. However, the two concepts differ in more general domains. In the context

of college admissions, for example, colleges often target balancing the composi-

tion of the incoming cohort across many dimensions such as diversity, academic

focus, etc. Although in the last two decades the matching market design litera-

ture dedicated much attention to constrains and to the presence of contracts, the

relation between stability and justified envy in these environments remains largely

unexplored.

An example of how feasibility constraints draw a wedge between stability and

no justified envy comes from no-spouse and anti-nepotism employment policies.

These policies prevent family members from being hired by or admitted to the

same institution. While illegal in most states of the United States today (as they

may be considered a form of marital status discrimination), these kind of rules

were prevalent in the past in the private and the public sector,3 and they are

still common in other countries.4 When such employment policies are in place, an

institution may consider two family members as the two most desirable candidates,

but end up hiring only one of them, together with another, less desirable candidate.

In this case, one can argue whether or not the family member not hired experiences

justified envy toward the less qualified candidate who was hired.5

A good example for why it is important to distinguish between stability and no

justified envy arises from Hungarian college admissions. Biró et al. (2020) study

this matching-with-contracts environment, where students are ordered based on

academic achievement. The current mechanism assigns students to schools and

allocates funding based on the same ordering. This makes merit a criterion along

which students may compare their outcomes with others,6 and based on which

students may experience justified envy toward their peers. Biró et al. (2020) show

3For a survey of case studies and a historical overview, see Chandler et al. (2002).
4In Israel, for example, anti-nepotism employment regulations are relatively common and

exist in all branches of public service (Koch Davidovich, 2010).
5In the context of multi-dimensional constraints, Delacrétaz et al. (2019) note that a weak

form of no justified envy is independent of stability.
6In this case, our definition of priority is indeed the same as the academic merit ordering

(with the exception of top-performers who cannot be compared, see Example 3.2).
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that the mechanism is stable and admits no justified envy, but also that there

are other stable allocations that do admit justified envy and may be considered

superior according to some criteria. For example, the number of students admitted

to college could be increased by 2% by selecting another stable allocation. This

provides some indication that policymakers—in Hungary and in other countries

with similar circumstances—care not only about stability, but also about other

properties, among them no justified envy.

Formally defining justified envy in more general environments (with arbitrary

preferences, feasibility constraints, and contracts) is not straightforward. In the

examples above the merit order is complete and exogenously given. But it is not

always clear who is prioritized over whom, and as a consequence what type of

envy is “justified.” For example, in the context of business school admissions,

schools are often classifying applicants into a few “types” (finance, consulting,

entrepreneurs, etc.). While the choice between applicants of different types may

depend on the composition of the rest of the cohort, it may be possible to point, for

example, to the best candidate among the finance candidates. For a slightly more

elaborate scenario (one that involves contracts), consider a college that uses one

ranking for admissions and another ranking to determine how to allocate funding.

It is not necessarily clear that the first student in line for funding is prioritized (in

any meaningful sense) over any of the other students. She may be the last student

in the admissions ranking. Moreover, both rankings may not be observable to an

outside analyst.

Our approach is to first infer a priority relation from schools’ observable choices

in the spirit of the revealed preferences literature.7 Schools’ choices (represented

by their choice functions) are determined by their preferences and potentially also

by feasibility constraints imposed by a regulator. Choice functions are therefore

a general way to describe both incentives and policy goals. We derive a priority

relation that coincides with schools’ rankings in the “standard” case of responsive

preferences (but in general it is not a total order over students). Second, we

7Conceptually related is the literature on revealed preference in matching markets (See

Chambers and Echenique, 2016, Chapter 10 and references therein).
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generalize the definition of justified envy to cases where “justification” is given by

a priority relation, like the one we infer. We then study the connection between

stability and no justified envy in a model of matching with contracts (as in Hatfield

and Milgrom, 2005) and constraints (see, e.g., Kamada and Kojima, forthcoming,

and the references therein).

In this general model, the implication from stability to no justified envy de-

pends on the properties of the schools’ choice functions and on the strength of

the derived priority relation. For example, if for all schools the priority relation

is empty (i.e., no student is prioritized over any other student), there can be no

justified envy.

When schools only have one type of position, no stable allocation admits justi-

fied envy. However, feasibility constraints may call for a different, more permissive

priority relation. We consider a weak priority relation based on hypothetical school

preferences that a student can imagine and that cannot be falsified by the school’s

observed choices (e.g., “I was only rejected from the school because the govern-

ment imposed an affirmative action policy”). A stable allocation may admit weak

justified envy, i.e., based on this weaker priority relation.

In the presence of multiple contract terms, a stable allocation may also admit

justified envy. In some markets, this is true for all stable outcomes. However, we

show that when schools’ choice functions are substitutable, this cannot happen.

Substitutability is a well-known property of choice functions, roughly stating that

removing a contract from the choice menu does not make another contract less

desirable. Following Hatfield and Milgrom (2005), it has been used extensively

in market design to guarantee the existence of a stable allocation in many-to-one

matching markets with contracts. When choice functions are substitutable, a sta-

ble allocation that admits no justified envy always exists. One such allocation can

be reached using the student-proposing deferred acceptance (DA) algorithm (Gale

and Shapley, 1962), providing yet another justification for using this mechanism.

The paper is structured as follows. Section 2 presents the model. Section 3

introduces our derivation of the revealed priority relation and its weaker coun-
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terpart, and presents results for generalized school-choice settings (without con-

tracts). Section 4 covers the matching-with-contracts environment. Section 5

concludes.

2 Model

We begin by introducing a few definitions that will help us describe many-to-one

matching markets with arbitrary preferences, feasibility constraints, and contracts.

Let I be a non-empty finite set of students, S a non-empty finite set of schools,8

and T a non-empty finite set representing potential contract terms between stu-

dents and schools. We denote the set of contracts by X = I × S × T . For a

contract x = (i, s, t) ∈ X, we denote by xI the student that participates in this

contract, i, and by xS the school that participates in this contract, s. For any

subset of contracts Y ⊆ X, we denote the subset of contracts in which a given

student i ∈ I appears by Yi := {x ∈ Y | xI = i}, and the subset of contracts in

which a given school s ∈ S appears by Ys := {x ∈ Y | xS = s}. Whenever Yi is a

singleton and there is no risk of confusion, we also refer to the single contract as

Yi.

Each student i has a strict preference order �i over Xi and being unmatched

(denoted by ∅). When explicitly writing a student’s preference, we sometimes omit

contracts less preferred to ∅. Each school s has a strict preference order �s over

subsets of Xs (including the empty set). We assume throughout that schools never

rank a subset that contains two or more contracts with the same student above

the empty set.9 For a school s, we denote by Ps the domain of strict preference

orders over subsets of Xs that conform to this restriction.

Each school is also subject to an exogenously given constraint that takes the

form of a collection of sets of contracts Fs ⊆ 2Xs . We say that a subset Y ⊆ Xs is

8Although our results are motivated by applications with complex preferences, such as college

admissions, we choose to use the traditional label “schools.”
9Our discussion is adapted to the many-to-one matching model, rather than to the many-

to-many matching environment.
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feasible for s if Y ∈ Fs, and that it is infeasible otherwise. We assume that the

empty set is feasible, ∅ ∈ Fs. We denote by Chs the choice function induced by

�s and10,11 Fs:

∀X ′ ⊆ X,Chs(X
′) := max

�s

{Y ⊆ X ′s | Y ∈ Fs} .

We use Ch∗s to refer to the choice function of school s in the absence of feasibility

constraints (i.e., with Fs replaced by 2Xs in the expression above).

We refer to the tuple
(
I, S, T, {�i}i∈I , {�s}s∈S , {Fs}s∈S

)
as a market. We

now define a few well-known properties of choice functions.

Definition 2.1. The choice function Chs is responsive if there exists qs ∈ N and

a ranking of the “acceptable” contracts in Xs: x1 >s x2 >s · · · >s xn, such that

for any X ′ ⊆ X the chosen contracts are the qs maximal (acceptable) contracts in

X ′ according to >s, and multiple contracts with the same student are not chosen

twice. If fewer than qs such contracts are available, all of them are chosen. We say

that school s has responsive preferences if Ch∗s is responsive, i.e., in the absence

of feasibility constraints, its preferences induce a responsive choice function.

Definition 2.2 (Hatfield and Milgrom, 2005). Let Rs be the rejection function

defined by Rs(X
′) = X ′ \ Chs(X

′). The choice function Chs is substitutable if

for all subsets X ′ ⊆ X ′′ ⊆ X we have Rs (X ′) ⊆ Rs (X ′′).

An allocation is a collection of contracts, Y ⊆ X, where no student appears

in multiple contracts, i.e., ∀i ∈ I, |Yi| ≤ 1. An allocation is feasible if Ys ∈ Fs for

each s ∈ S.

We say that student i blocks allocation Y if ∅ �i Yi. Similarly, school s blocks

allocation Y if Chs(Ys) �s Ys. We say that a coalition consisting of students I ′

10An alternative approach would be to take choice functions as the primitives of our model.

While perfectly useful for most of this paper, this approach is not suitable for our discussion on

justified envy under feasibility constraints in Section 3.3.
11As schools’ choice functions are derived from strict preferences and feasibility constraints,

they automatically satisfy the irrelevance of rejected contracts condition (Aygün and Sönmez,

2013).
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and school s blocks allocation Y if there exists a non-empty subset of contracts

X ′ ⊆ I ′ × {s} × T such that ∀i ∈ I ′, |X ′i| = 1, X ′i �i Yi, and X ′ ⊆ Chs (Ys ∪X ′).

Allocation Y is stable if it is not blocked by any student, school, or coalition.

In general, defining stability in the presence of constraints is not straightfor-

ward. A key difficulty is that some blocking pairs (or coalitions) may lead to

infeasible allocations. We address this issue by integrating the constraints into

the choice function, practically ruling out this kind of blocking coalitions. Similar

solutions are suggested by Kamada and Kojima (2017) for markets with distribu-

tional constraints, and by Ehlers et al. (2014) for school choice with upper and

lower quotas.

3 Generalized School Choice

In this section we only consider the case of |T | = 1 (the “generalized school-choice

settings”). We omit any reference to the (single) term involved in the contracts.

Furthermore, for any school s we abuse notation and treat �s as if it was an order

over subsets of students, and treat Chs as if its domain and range were subsets of

students. We return to the general setting in Section 4.

3.1 The Priority Relation

We define an extension of the priority relation used when discussing school choice

with responsive preferences. We derive this priority relation from schools’ observed

behavior (as reflected by their choice functions), and intentionally avoid directly

using the preferences of schools, as these may not be observable.

Definition 3.1. For any two students i, j ∈ I and school s ∈ S, we say that i is

prioritized over j at s, and write i�s j, if

(a) ∀I ′ ⊆ I, j ∈ Chs (I ′ ∪ {i, j)})⇒ i ∈ Chs (I ′ ∪ {i, j}), and

(b) ∃I ′ ⊆ I such that i ∈ Chs (I ′ ∪ {i, j}) and j /∈ Chs (I ′ ∪ {i, j}).
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In words, student i is prioritized over student j if whenever the school chooses

j while i is available, the school chooses i as well, and the opposite does not hold

(i.e., there exists a case where both students are available but only i is chosen).

The priority relation (at a certain school) is an asymmetric binary relation over

students. This relation is transitive if Chs is substitutable, but otherwise it may be

non-transitive (as we prove in Appendix A).12 Example 3.2 compares the priority

relation we defined with the ranking of students under responsive preferences.

Example 3.2 (Responsive preferences). Suppose that school s has responsive

preferences with a capacity qs and ranking i1 > · · · > in, and Fs = 2I . Then for

any qs < t2 ≤ n and any t1 < t2, we have that it1 �s it2 . Also, any acceptable

student it is prioritized over any unacceptable student j ∈ I \ {i1, . . . , in}. This

corresponds to our natural interpretation of the school’s ranking as a priority rela-

tion, with the caveat that the school’s choice data does not reveal any information

about comparisons between the top qs students (who are all guaranteed a place in

the school).13

The notion of revealed priority may be useful for purposes other than defining

justified envy. For example, the reserve design literature studies situations where

12One may be tempted to consider “conditional priority” along the following lines. Imagine

a school with one slot reserved for minorities and a ranked list of students, some of whom

belong to the minority population. According to our definition, while the top minority student

is prioritized over all other students who are ranked below the number of available places, the

second from the top minority student is already not prioritized over any of the students ranked

above her, nor are any of them prioritized over her. However, conditional on the top minority

student not being available, the second from the top minority student seems to have a justified

claim over the slot reserved for minorities. We note that such motivation is more removed from

the notions of “priority” or “justification” and closer to the notion of stability, since it takes into

account coalitional deviations from a proposed allocation.
13Incidentally, using our priority relation simplifies the definition of Ergin’s (2002) acyclity

condition. A market contains a cycle if there exist i, j, k ∈ I and a, b ∈ S such that i �a

j �a k �b i. Ergin’s main result is that when schools’ choice functions are responsive, a fair

and efficient allocation is guaranteed to exist regardless of student preferences if and only if the

market contains no cycle.
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a certain number of seats are reserved for specific groups of applicants (e.g., under-

represented minorities), while other seats are available to the general population.

Dur et al. (2018) show that choice functions that try to first place students in gen-

eral population seats benefit the prioritized group relative to choice functions that

try to first place students in reserved seats. Consistently, students from the prior-

itized group (general population) are revealed preferred to more (fewer) students

in this case. Similarly, the recent reform in order in which H1-B visas applications

are processed (see Pathak et al., 2020) has led to more applicants with graduate

degrees being prioritized over applicants who do not possess such degrees, even

though the exogenous priority ranking was not changed. The examples of reser-

vation policies highlight the fact that even when an order of merit is available,

schools’ choices may be inconsistent with this order, and lower merit individuals

may be revealed preferred to higher merit individuals.

3.2 Justified Envy

We say that student i has justified envy toward student j at allocation Y if

[Yj]S �i [Yi]S, that is, i prefers the school to which j is assigned over her own

assignment, and she is prioritized over j at that school. We say that Y admits

no justified envy if there are no students i and j such that i has justified envy

toward j at Y .

Unlike other definitions of justified envy that appear in the literature (e.g.,

Sönmez, 2013), our definition does not make use of an exogenously given priority

relation, and instead uses the revealed priority. This makes our approach more flex-

ible and appropriate for a variety of environments and preferences. The example

of Educational Option programs in the New York City High School Match (Ab-

dulkadiroğlu et al., 2005) provides a stark illustration of the difference between the

two approaches. Educational Option programs are allowed to individually choose

students for half of their seats, subject to the restriction that 16 percent be al-

located to top performers in a standardized English Language Arts (ELA) exam,

68 percent to middle performers, and 16 percent to lower performers. Suppose a
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program s ranks students solely based on their ELA score, and chooses subsets of

students subject to the above constraint. If student i has a better ELA score than

student j, but student j has the highest score among “low performers,” a possible

outcome is that j gets admitted to s while i is not. In this case, a definition based

on students’ scores will deem i’s envy towards j justified (reflecting a point of view

that higher score students have higher priority for school seats). By contrast, by

our definition j is prioritized over i at s, since j is always chosen by s when she is

available, and therefore i’s envy is not justified (reflecting the school’s admission

policy which guarantees a seat for j but not for i).

It is worthwhile to mention that extending the concept of no justified envy

to arbitrary preferences is already enough to set it apart from stability, as is

demonstrated by Example 3.3.

Example 3.3. Let I = {i1, i2, i3, i4}, and S = {s}. School s has two seats, and

its preferences are given by

{i1, i3} �s {i2, i4} �s {i3, i4} �s {i1, i4} �s {i2, i3} �s

{i1, i2} �s {i1} �s {i2} �s {i3} �s {i4} �s ∅.

There are no feasibility constraints (Fs = 2I). Here Chs ({i1, i3, i4}) = {i1, i3}, so

i4 is not prioritized over i3. Furthermore, whenever i2 and i4 are both available,

either both or none of them are chosen. This means that i4 is also not prioritized

over i2.

Suppose students’ preferences are such that i1 finds s unacceptable, but i2, i3,

and i4 find s acceptable. Then the allocation {(i2, s), (i3, s)} is individually ratio-

nal,14 non-wasteful,15 and admits no justified envy, but it is not stable. This stands

in contrast to the characterization result that holds for responsive preferences.

14We say that allocation Y is individually rational if for every student i, Yi �i ∅, and for

every school s, Chs(Ys) = Ys.
15We say that student i claims an empty seat at school s under allocation Y if s �i Yi and

Chs (Ys ∪ {i}) = Ys ∪ {i}. Allocation Y is non-wasteful if no student claims an empty seat at

any school under Y .
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Despite this negative result, we show that the other direction of Abdulkadiroğlu

and Sönmez’s (2003) observation about responsive preferences does continue to

hold in generalized school-choice settings. The following result does not impose

any structure on the schools’ preferences.

Proposition 3.4. In generalized school-choice settings, a stable allocation admits

no justified envy.

Proof. Let Y be a stable allocation. Suppose that [Yj]S = s �i [Yi]S. By stability,

i /∈ Chs (Ys ∪ {i}). By stability and the irrelevance of rejected contracts property,

j ∈ Chs (Ys) = Chs (Ys ∪ {i}). Thus i does not have priority over j at s.

3.3 Feasibility Constraints

We use feasibility constraints to model any technical rules or regulations that pro-

hibit schools from choosing certain subsets of students independently of schools’

preferences. Apart from the anti-nepotism employment policies mentioned in Sec-

tion 1, feasibility constraints may also arise from affirmative action policies that

impose bounds on the number of chosen students from each population group (Ab-

dulkadiroğlu, 2005). In the presence of feasibility constraints, one should arguably

use a slightly more nuanced definition of justified envy. The issue is that a stu-

dent (who is aware of the feasibility constraints) may justifiably feel envy toward

another student if the former would have been prioritized over the latter in the

absence of feasibility constraints. If the preferences of the schools are observable,

it is clear who is prioritized over whom, and that a stable allocation may exhibit

justified envy.16 However, if only schools’ choices and feasibility constraints are

observed (but not their “unmasked” preferences), a student may experience justi-

fied envy to an even greater extent if she forms a theory (that is consistent with

the school’s observed behavior) under which she is prioritized over other students.

Our definition below of the weak priority relation is motivated by considering

this last scenario, in which schools’ true preferences are masked by the feasibility

16In the same way that the COSM mechanism with ROTC priorities is not fair (Sönmez,

2013).

12



constraints.17 We allow students to consider a candidate school preference relation,

under which they see themselves as prioritized over other students, as long as this

does not contradict with the observed choices. Until the end of this section,

we will explicitly write Chs [�s,Fs] when referring to a school’s choice function

with preference relation �s and feasibility constraints Fs. Similarly, we will write

Chs [�s] to refer to the choice function of school s with preference relation �s and

in the absence of feasibility constraints.

Definition 3.5. For any two students i, j ∈ I and a school s ∈ S, we say that i

is weakly prioritized over j at s, and write i�w
s j, if there exists some �′∈ Ps

such that

(1) ∀I ′ ⊆ I, Chs [�s,Fs] = Chs [�′s,Fs],

(2a) ∀I ′ ⊆ I, j ∈ Ch∗s [�′s] (I ′ ∪ {i, j)})⇒ i ∈ Ch∗s [�′s] (I ′ ∪ {i, j}), and

(2b) ∃I ′ ⊆ I such that i ∈ Ch∗s [�′s] (I ′ ∪ {i, j}) and j /∈ Ch∗s [�′s] (I ′ ∪ {i, j}).

In words, student i is weakly prioritized over student j if there exists a school

preference relation which (1) is indistinguishable from the true preference relation

of s when masked by the feasibility constraints, and (2) prioritizes i over j, in the

sense of Definition 3.1, in the absence of feasibility constraints. We again stress

that the preference �′ appearing in Definition 3.5 is an hyopthesized preference,

and the weak priority relation should be interpreted as perceived priority rather

than true priority (see also Examples 3.6 and 3.7 below).

Clearly, i �s j ⇒ i �w
s j, since one can consider �′s which is the same as

�s, except for the sets not allowed by Fs (which are deemed less preferred to ∅

under �′s). This means that more pairs of students are comparable according to

the weak priority relation. Example 3.6 shows that the weak priority relation can

sometimes be strictly finer, i.e., compare strictly more pairs. Example 3.7 further

shows that �s may fail to be asymmetric.

17A similar consideration (the feasibility of certain blocking coalitions) motivates Ehlers and

Morrill (2020) to weaken the stability notion.

13



Example 3.6. Let I = {i1, i2, i3, i4} and S = {s}. School s has responsive

preferences with a capacity of 2, and it ranks i1 above i2 above i3 above i4.

{i1, i2} �s {i1, i3} �s {i1, i4} �s {i2, i3} �s {i2, i4} �s {i3, i4} �s

{i1} �s {i2} �s {i3} �s {i4} �s ∅.

The feasibility constraint Fs = 2I \ {{i1, i2}, {i1, i2, i3}, {i1, i2, i4}, I} reflects the

fact that i1 and i2 cannot be admitted simultaneously.

With these preferences and constraints, i2 6�s i4, since i4 ∈ Chs ({i1, i2, i4})

but i2 /∈ Chs ({i1, i2, i4}). However, i2 �w
s i4. To see this, consider �s, the true

preference relation of s, without any feasibility constraints.

Example 3.7. Consider the same scenario of Example 3.6 with a different feasi-

blity constraint.

Fs = {{i1, i3}, {i2, i4}, {i1}, {i2}, {i3}, {i4}, ∅} .

This constraint restricts the school to choose either even-numbered or odd-numbered

students, but not a mix of these two.

We get that i1 �w
s i2 (by considering responsive preferences with the students

being ordered i1 >s i3 >s i2 >s i4) and also that i2 �w
s i1 (by considering

responsive preferences with the students being ordered i2 >s i1 >s i3 >s i4, and

with {i1, i3} �s {i2, i4}).

We say that student i has weak justified envy toward student j at allocation

Y if i prefers the school j is assigned to, [Yj]S, to her own assignment, and she

is weakly prioritized over j at that school. We say that Y admits no weak

justified envy if there are no students i and j such that i has weak justified envy

toward j at Y .

A stable allocation may admit weak justified envy. For example, if in the

settings from Example 3.6 we let s be acceptable to all students except student

i3, then {(i1, s), (i4, s)} is the unique stable allocation, and i2 has weak justified

envy toward i4 at this allocation.
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Examples 3.6 and 3.7 show that the weak priority relation behaves erratically

even when restricting consideration to small and more familiar domains. Moreover,

when taken together with Example 3.2, our interpretation of these examples is that

in the presence of feasibility constraints, not disclosing schools’ priorities can leave

a large number of students frustrated, believing that they were mistreated. This

can be seen as a complement to Sönmez’s (2013) analysis of observable priorities

under feasibility constraints.

4 Multiple Contract Terms

We now return to the general matching-with-contracts model. Before we can

define priority and justified envy for this environment, we need to consider the

issue of interpersonal comparisons of contracts. When defining contracts, Hatfield

and Milgrom (2005) do not consider interpersonal comparisons (such as envy) and

consequentially their framework allows for a very general interpretation of terms of

employment. For example, Juliet’s terms of employment at a specific firm could be

that she gets a salary of $150k and is allowed to bring a guest, but only if his name

is Romeo, to the annual office party. This works out just great for Juliet. However,

this kind of contract is not necessarily envied by Desdemona, who cannot enjoy

the office party with Romeo, fearing that they would both suffer the wrath of her

jealous husband Othello. Since we are interested in interpersonal comparisons, we

look at settings where terms are comparable (e.g., getting a certain scholarship,

being admitted to a certain study track, bringing a companion to the annual office

party, and so on).

With this caveat in mind, we extend the definition of priority by referring to

specific terms of employment that are relevant for both i and j.

Definition 4.1. For any two students i, j ∈ I and school s ∈ S, we say that i is

prioritized over j at s, and write i�s j, if

(a) ∀t ∈ T, ∀X ′ ⊆ X, (j, s, t) ∈ Chs (X ′ ∪ {(i, s, t), (j, s, t)}) ⇒

Chs (X ′ ∪ {(i, s, t), (j, s, t)}) ∩Xi 6= ∅, and
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(b) ∃t ∈ T,∃X ′ ⊆ X such that (i, s, t) ∈ Chs (X ′ ∪ {(i, s, t), (j, s, t)}) and

Chs (X ′ ∪ {(i, s, t), (j, s, t)}) ∩Xj = ∅.

In words, if j is chosen with certain terms and there is a contract available with

i under the same terms, then i is also chosen (under these terms, or others).18 This

definition is motivated by the idea that a student who is prioritized by the school

will always be chosen to fill a specific position before a student over whom she is

prioritized, unless the former is chosen to fill a different position.19 For example,

when contracts represent different study programs at a certain college, then a

situation in which j is admitted to the economics program, and i is an applicant

to the same program, indicates that i should be admitted to some program at that

college (but, if i applied to multiple programs, not necessarily to the economics

program).

As before, we say that student i has justified envy toward student j at allo-

cation Y if i prefers the school and terms to which j is assigned to her own assign-

ment, and she is prioritized over j at that school. Formally, suppose (j, s, t) ∈ Y ,

then i has justified envy toward j at Y if (i, s, t) �i Yi and i�s j.

Example 4.2 (Stable allocation with justified envy under substitutable choice

functions). Let I = {i, j, k} and S = {s}. T = {f, nf} represents funded and

non-funded positions in the school. Denote xt
i′ ≡ (i′, s, t). The school has re-

sponsive preferences with capacity 2, and it prefers not to give funding, but cares

lexicographically more about students’ identities. In particular, it uses the ranking

xnf
i > xf

i > xnf
j > xf

j > xnf
k > xf

k.

18This definition is related to Sönmez’s (2013) definition of fair branch priorities induced by a

choice function. Sönmez asks whether a choice function violates a given priority order, whereas

we first derive a priority from a given choice function.
19While Definition 4.1 is agnostic with regard to the interpretation of terms, an alternative

definition of priority that assumes that terms are ordered will result in a (weakly) coarser priority

relation. Such a relation could be more adequate for studying environments in which terms are

naturally ordered, such as college admissions with funding (Hassidim et al., 2021) or cadet-branch

matching (Sönmez, 2013; Sönmez and Switzer, 2013; Jagadeesan, 2019).
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There are no feasibility constraints: Fs = Xs. The induced choice function is

substitutable, and i�s k.

Suppose that student i’s preferences are given by xf
i �i xnf

i �i ∅, student j

finds all contracts unacceptable, and student k’s preferences are xf
k �k ∅. There

are two stable allocations: Y1 =
{
xf
i, x

f
k

}
, which is the student-optimal stable

allocation and which admits no justified envy, and Y2 =
{
xnf
i , x

f
k

}
, which is the

school-optimal stable allocation and at which i has justified envy toward k.

While Example 4.2 may seem a bit contrived, it does resemble many existing

college admissions environments, in which funding levels may vary between stu-

dents, and not necessarily be based on their priority for the purpose of admission.

The example provides simpler college preferences than are often used in practice,

since in most college admissions scenarios funding is limited, which results in a

non-substitutable choice function (see, e.g., Hassidim et al., 2017).

Theorem 4.3 below shows that for substitutable choice functions, while some

stable allocations may induce justified envy, there always exists at least one stable

allocation that does not admit justified envy. Furthermore, such a stable allocation

can be found using the student-proposing DA.20

Theorem 4.3. If all schools’ choice functions are substitutable, then there exists

a stable allocation that admits no justified envy, and one such allocation can be

reached using the student-proposing DA.

Proof. We consider the cumulative offer process, which, in the domain of substi-

tutable choice functions, produces the student-optimal stable allocation (Hatfield

and Milgrom, 2005). In the cumulative offer process, students propose as in DA,

but schools get to choose from all the offers they received in the current or any

previous round.

Let Y be the stable allocation that results from the cumulative offer process.

Suppose that some student i has justified envy toward another student j at the

allocation Y , and that Yj = (j, s, t).

20Example 4.2 illustrates that this result does not extend to the allocation resulting from

school-proposing DA.
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Since i envies j, and Y is stable, it must be that (i, s, t) /∈ Chs (Y ∪ {(i, s, t)}).

But, since i has priority over j at s, it must be that Chs (Y ∪ {(i, s, t)})∩Xi 6= ∅.

Therefore there exists t′ 6= t such that (i, s, t′) ∈ Chs (Y ∪ {(i, s, t)}), and this

implies that (i, s, t′) ∈ Y , meaning i is assigned to s under different terms than j.

Since i is eventually assigned the contract (i, s, t′) and she envies j, it must be

that during the cumulative offer process i proposed to s the contract (i, s, t) and it

was rejected. Let Y ′s denote the set of contracts that were available to s during the

run of the cumulative offer process when (i, s, t) was first rejected. Note that Y ′s

may contain contracts with i that were already rejected (and, by substitutability,

are also rejected from Y ′s ), and it may also contain contracts with j (at most one

of which is not rejected). However, it cannot contain (j, s, t). The reason is that

(j, s, t) is not rejected from a set that includes Y ′s (the set of offers available when

the process terminates). Thus, by substitutability, had Y ′S contained (j, s, t), this

contract would have been chosen from Y ′S, in contradiction to i�s j.

Now consider the set of all contracts available to s at the end of the cumulative

offer process, and denote it by Y ′′s . We know that (j, s, t) ∈ Ys = Chs(Y
′′
s ). Since

Y ′s ⊆ Y ′′s , substitutability implies that (j, s, t) ∈ Chs (Y ′s ∪ {(j, s, t)}). Now i�s j

implies that Chs (Y ′s ∪ {(j, s, t)}) ∩Xi 6= ∅, which means that i was assigned one

of the contracts she proposed. And, by substitutability, we get that the same

contract should have been chosen from Y ′s as well, a contradiction.

While Theorem 4.3 equally applies in the presence of feasibility constraints

and in their absence, it should be noted that the theorem’s applicability may be

limited by such constraints in many cases. That is, given preferences that would

induce a substitutable choice function absent any feasibility constraints, imposing

the constraints on it may result in a non-substitutable choice function. This is,

for example, the case with budget constraints (Mongell and Roth, 1986) and with

capacity constraints (Romm, 2014, Lemma 1).21

Finally, we observe that outside of the substitutable preferences domain, The-

21See also Kojima et al. (2020) for a discussion on the effects of constraints on substitutability

in a matching-with-salaries environment.
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orem 4.3 fails to hold. Appendix A provides an example of a market with a single

school whose choice function satisfies the law of aggregate demand (Hatfield and

Milgrom, 2005), bilateral substitutability (Hatfield and Kojima, 2010), and sub-

stitutable completability (Hatfield and Kominers, 2015), where the unique stable

allocation induces justified envy. This observation has important implications, as

the two latter generalizations of substitutability are used extensively in studies of

matching market design and in practice. The matter of whether or not a result

similar to Theorem 4.3 holds for choice functions that satisfy unilateral substi-

tutability (Hatfield and Kojima, 2010) turns out to be more elusive, and it is left

open.22

5 Discussion

The elimination of justified envy is an important concept that embodies basic

fairness considerations and that deserves the attention of market designers. Ab-

dulkadiroğlu and Sönmez (2003) observed that it is tightly related to the absence

of blocking pairs in the Boston Public Schools’ new matching system, and showed

that stability implies no justified envy in the context of school choice. This con-

tribution inspired a large literature that employs this connection to study stable

mechanisms and their fairness properties.

As demonstrated in this paper, when constraints or contracts are present, the

two concepts of stability and no justified envy become independent. While we do

not take a stand regarding the relative desirability of these properties, we note that

this independence opens the door for designing market mechanisms that satisfy

only one of these two properties. For example, as mentioned above, Biró et al.

(2020) show that policymakers in Hungary choose a fair and stable mechanism,

even when choosing a stable but unfair allocation could could increase the number

of admitted students. A similar choice is made in many other countries, including

Australia, Azerbaijan, and Turkey.

22Biró et al. (2020, Proposition 5) present a similar result for certain college admissions

scenarios, where schools’ choice functions are non-substitutable.
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When choice functions are substitutable, using the deferred acceptance algo-

rithm does lead to a stable allocation that also admits no justified envy. This

may explain why, in many practical situations, no wedge between stability and no

justified envy has been observed. It remains an open problem to identify a bigger

family of choice functions that ensures the existence of a stable allocation that

admits no justified envy. Similarly, the problem of finding an extensive family of

preferences and feasibility constraints that induce substitutable choice functions

also remains open.
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A Additional Proofs and Examples

A.1 Transitivity of the Priority Relation

We first look at the case of substitutable choice functions, and then provide an

example for non-transitivity with a non-substitutable choice function.

Proposition A.1. If Chs is substitutable, then �s is transitive.

Proof. Suppose that i �s j and j �s k; we need to show that i �s k. For the

first requirement, let I ′ ⊆ I be such that k ∈ Chs (I ′ ∪ {i, k}). If j ∈ I ′ then

from j �s k we get that j ∈ Chs (I ′ ∪ {i, k}), and from i �s j we get that i ∈

Chs (I ′ ∪ {i, k}). Otherwise, let I ′′ = I ′ ∪ {j}. If k /∈ Chs (I ′′ ∪ {i, k}); then from

the irrelevance of rejected contracts property it follows that j ∈ Chs (I ′′ ∪ {i, k}),

from i �s j that i ∈ Chs (I ′′ ∪ {i, k}), and from substitutability that

i ∈ Chs (I ′ ∪ {i, k}). If k ∈ Chs (I ′′ ∪ {i, k}), then from j �s k, we get j ∈

Chs (I ′′ ∪ {i, k}), from i �s j, we get i ∈ Chs (I ′′ ∪ {i, k}), and from substi-

tutability, we get i ∈ Chs (I ′ ∪ {i, k}).

For the second requirement, let I ′ ⊆ I be such that i ∈ Chs (I ′ ∪ {i, j})

and j /∈ Chs (I ′ ∪ {i, j}). Consider I ′′ = I ′ ∪ {k}. From substitutability, j /∈

Chs (I ′′ ∪ {i, j}), and so from j �s k we also know that k /∈ Chs (I ′′ ∪ {i, j}). The
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irrelevance of rejected contracts property then ensures that i ∈ Chs (I ′′ ∪ {i, j}) =

Chs (I ′ ∪ {i, j}), and we are done.

The following example shows that when choice functions are not substitutable,

the priority relation may fail to be transitive.

Example A.2. Let I = {i, j, k} and S = {s}. The preferences of s are given by

{i, j, k} �s {i, k} �s {i} �s {j} �s {k},

and there are no feasibility constraints (Fs = 2I). Here i �s j and j �s k, but

i 6�s k.

A.2 Unique Stable Allocation that Admits Justified Envy

under Non-Substitutable Preferences

Example A.3. Let I = {i, j, k}, S = {s}, and T = {A,B,C}. To ease notation,

we will represent the contract (i, s, t) by it, and similarly for all other students.

The school’s preferences are given by

{jA, iB, kB} �s {jA, iC , kB} �s {jA, kB, iA} �s {jA, iB} �s {jA, iC} �s

{jA, kB} �s {jA, iA} �s {jA} �s {iB, kB} �s {iB, jB} �s {iC , kB} �s

{iC , jB} �s {kB, jB} �s {kB, iA} �s {jB, iA} �s {iB} �s {iC} �s

{kB} �s {jB} �s {iA} �s ∅.

These preferences satisfy the law of aggregate demand (Hatfield and Milgrom,

2005), bilateral substitutability (Hatfield and Kojima, 2010), and substitutable

completability (Hatfield and Kominers, 2015). Substitutable completability and

bilateral substitutability are (independent) weaker conditions than substitutabil-

ity, but they still ensure the existence of a stable allocation. Both conditions are

also weaker than Hatfield and Kojima’s (2010) unilateral substitutability (Kadam,

2017).

To verify that Chs satisfies substitutable completability, one can consider a

completion of �s that can be thought of as follows: the school always chooses jA
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when it is available, and in addition chooses from the remaining contracts accord-

ing to a “responsive” choice function (in quotation marks as it allows choosing

two contracts with the same student) with a capacity of 2 and the order over

singletons iB > iC > kB > jB > iA, and all other contracts (jC , kA, and kC)

are unacceptable. Formally we define �̄s as (underlined allocations violate the

constraint that each student can only be assigned one contract):

{jA, iB, iC}�̄s{jA, iB, kB}�̄s{jA, iB, jB}�̄s{jA, iB, iA}�̄s{jA, iC , kB}�̄s

{jA, iC , jB}�̄s{jA, iC , iA}�̄s{jA, kB, jB}�̄s{jA, kB, iA}�̄s{jA, jB, iA}�̄s{jA, iB}�̄s

{jA, iC}�̄s{jA, kB}�̄s{jA, jB}�̄s{jA, iA}�̄s{jA}�̄s{iB, iC}�̄s{iB, kB}�̄s

{iB, jB}�̄s{iB, iA}�̄s{iC , kB}�̄s{iC , jB}�̄s{iC , iA}�̄s{kB, jB}�̄s{kB, iA}�̄s

{jB, iA}�̄s{iB}�̄s{iC}�̄s{kB}�̄s{jB}�̄s{iA}�̄s∅.

Next, note that i �s j: if jA is chosen and iA is also available, then either it

or another contract with i is chosen. If jB is chosen and iB is also available, then

iB is also chosen. jC is unacceptable, and so is never chosen. Finally, if we look

at X ′ = {kB}, then iB ∈ Ch (X ′ ∪ {iB, jB}), but jB /∈ Ch (X ′ ∪ {iB, jB}).

Let the students’ preferences be given by

i : iA �i iC �i ∅

j : jB �j jA �j ∅

k : kB �k ∅.

One can easily verify that the unique stable allocation is {iC , jA, kB}, and under

it i has justified envy toward j.
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